The development of NCZ-1 dust-sticking agent was first intreduced in china. The speed of water absorption of dust-stick-ing agent was measured and studied on mining site and in laboratory, and then the law of water ab...The development of NCZ-1 dust-sticking agent was first intreduced in china. The speed of water absorption of dust-stick-ing agent was measured and studied on mining site and in laboratory, and then the law of water absorption of dust-sticking agent was analyzed. In addition, the mathematical model of the loss rate of dust-sticking agent was established by the application of fluid mechanics theory, and the method of determining the sprinkle parameters of dust-sticking agent was obtained. Through practical verifi-cation, it is found that the error of this mathematical model is less than 10%. So it can be used in the field.展开更多
Physical-chemical characteristics of the band sawing dusts regarding to recovery of pure silicon from them were investigated.The experimental results show 50vol%-60vol% amorphous phases exist in the dusts,which is mos...Physical-chemical characteristics of the band sawing dusts regarding to recovery of pure silicon from them were investigated.The experimental results show 50vol%-60vol% amorphous phases exist in the dusts,which is mostly amorphous silica.The as-received saw dusts are found to form hard agglomerates of larger than 50 microns in diameter.The iron-based inclusions collected by magnets are found to match well with the band saw material in XRD patterns.Weight loss in heating was observed by thermal gravity tests,up to 900 ℃,presumably due to reaction of the amorphous silica with carbon contaminant in the dusts.The saw dusts were variously treated to examine their physical-chemical responses,and the results were also presented.展开更多
Solar photovoltaic(PV)power represents one of the most promising future sources of energy in the world.Considered the cleanest form of energy,extensive research is being undertaken to widen its use.Notably,mega projec...Solar photovoltaic(PV)power represents one of the most promising future sources of energy in the world.Considered the cleanest form of energy,extensive research is being undertaken to widen its use.Notably,mega projects are being considered for installation in the Middle East and North Africa(MENA)region because of its high solar potential,with hopes of eventually feeding Europe from the PV electricity generated in this region and transported through high voltage direct current(DC)lines.However,current implementation of PV systems has shown that their reliability and efficiency depend upon surrounding environmental factors,such as the ambient temperature,wind,and rainfall,as well as soiling,pollution,and aging.The aim of this study was to investigate,through experimental tests,the effects of such factors on the power output of a grid connected PV station.The results showed that the output power and efficiency are deeply affected by various environmental factors,which are weather dependent.These findings may help us develop appropriate solutions to overcome these drawbacks.展开更多
Metallic corrosion is a serious problem in the application of a hygroscopic inorganic dust-depressor. The basic characteristics of a hygroscopic inorganic dust-depressor and its corrosivity, corrosion mechanism, as we...Metallic corrosion is a serious problem in the application of a hygroscopic inorganic dust-depressor. The basic characteristics of a hygroscopic inorganic dust-depressor and its corrosivity, corrosion mechanism, as well as the principle of corrosion inhibition were analyzed. The static mass-loss test was carried out to investigate the corrosion behavior and the effect of the dust-depressor. The static corrosion rates of steel specimens were measured in six different corrosion inhibitor solutions of the dust-depressor, and the suitable corrosion inhibitors for the dust-depressor to reduce the corrosivity were found out.展开更多
The paper presents the change in grain-size composition of lignite under cyclic freezing-thawing (FTC) and wetting-drying (WDC). The article shows that in the spring and autumn periods the lignites can be subjected to...The paper presents the change in grain-size composition of lignite under cyclic freezing-thawing (FTC) and wetting-drying (WDC). The article shows that in the spring and autumn periods the lignites can be subjected to repeated freezing-thawing and wetting-drying, which determines the possibility of changing their grain-size composition and structure. Experimental studies in laboratory conditions on the influence of cyclic freezing-thawing (FTC) and wetting-drying (WDC) on the quality indicators of lignites have been carried out, their granulometric (fractional) composition has been studied. Freezing-thawing cycle conditions are as follows (FTC): minimum exposure temperature: -20°C;maximum: +5°C;relative humidity: 30%;number of processing cycles: 3. Wetting-drying cycles are as follows (WDC): drying temperatures are +20, +40, +60, +80°C, drying time 90 minutes, the coals are further subjected to rain (soaking) for a period of water saturation to humidity of 30% - 40% and dry again. The number of wetting-drying cycles is 3 times. The tests have revealed the destructive effects of FTC and WDC on the samples of lower metamorphic grade coal, and the cycles of wet-dry lead to the much higher yield of fine sizes (-6+0;-13+0 mm) than the cycles of freeze-thaw. Furthermore, it is found that the increase in the yield of fines depends on the heating temperature: coal disintegration proceeds more intensively at a higher temperature of drying.展开更多
文摘The development of NCZ-1 dust-sticking agent was first intreduced in china. The speed of water absorption of dust-stick-ing agent was measured and studied on mining site and in laboratory, and then the law of water absorption of dust-sticking agent was analyzed. In addition, the mathematical model of the loss rate of dust-sticking agent was established by the application of fluid mechanics theory, and the method of determining the sprinkle parameters of dust-sticking agent was obtained. Through practical verifi-cation, it is found that the error of this mathematical model is less than 10%. So it can be used in the field.
基金Funded by the LDK Solar(TC-NU-0004)the Science & Technology Project of Education Department of Jiangxi Province(No.GJJ10034)
文摘Physical-chemical characteristics of the band sawing dusts regarding to recovery of pure silicon from them were investigated.The experimental results show 50vol%-60vol% amorphous phases exist in the dusts,which is mostly amorphous silica.The as-received saw dusts are found to form hard agglomerates of larger than 50 microns in diameter.The iron-based inclusions collected by magnets are found to match well with the band saw material in XRD patterns.Weight loss in heating was observed by thermal gravity tests,up to 900 ℃,presumably due to reaction of the amorphous silica with carbon contaminant in the dusts.The saw dusts were variously treated to examine their physical-chemical responses,and the results were also presented.
文摘Solar photovoltaic(PV)power represents one of the most promising future sources of energy in the world.Considered the cleanest form of energy,extensive research is being undertaken to widen its use.Notably,mega projects are being considered for installation in the Middle East and North Africa(MENA)region because of its high solar potential,with hopes of eventually feeding Europe from the PV electricity generated in this region and transported through high voltage direct current(DC)lines.However,current implementation of PV systems has shown that their reliability and efficiency depend upon surrounding environmental factors,such as the ambient temperature,wind,and rainfall,as well as soiling,pollution,and aging.The aim of this study was to investigate,through experimental tests,the effects of such factors on the power output of a grid connected PV station.The results showed that the output power and efficiency are deeply affected by various environmental factors,which are weather dependent.These findings may help us develop appropriate solutions to overcome these drawbacks.
文摘Metallic corrosion is a serious problem in the application of a hygroscopic inorganic dust-depressor. The basic characteristics of a hygroscopic inorganic dust-depressor and its corrosivity, corrosion mechanism, as well as the principle of corrosion inhibition were analyzed. The static mass-loss test was carried out to investigate the corrosion behavior and the effect of the dust-depressor. The static corrosion rates of steel specimens were measured in six different corrosion inhibitor solutions of the dust-depressor, and the suitable corrosion inhibitors for the dust-depressor to reduce the corrosivity were found out.
文摘The paper presents the change in grain-size composition of lignite under cyclic freezing-thawing (FTC) and wetting-drying (WDC). The article shows that in the spring and autumn periods the lignites can be subjected to repeated freezing-thawing and wetting-drying, which determines the possibility of changing their grain-size composition and structure. Experimental studies in laboratory conditions on the influence of cyclic freezing-thawing (FTC) and wetting-drying (WDC) on the quality indicators of lignites have been carried out, their granulometric (fractional) composition has been studied. Freezing-thawing cycle conditions are as follows (FTC): minimum exposure temperature: -20°C;maximum: +5°C;relative humidity: 30%;number of processing cycles: 3. Wetting-drying cycles are as follows (WDC): drying temperatures are +20, +40, +60, +80°C, drying time 90 minutes, the coals are further subjected to rain (soaking) for a period of water saturation to humidity of 30% - 40% and dry again. The number of wetting-drying cycles is 3 times. The tests have revealed the destructive effects of FTC and WDC on the samples of lower metamorphic grade coal, and the cycles of wet-dry lead to the much higher yield of fine sizes (-6+0;-13+0 mm) than the cycles of freeze-thaw. Furthermore, it is found that the increase in the yield of fines depends on the heating temperature: coal disintegration proceeds more intensively at a higher temperature of drying.