The recovery of metal oxides from stainless steel dust using C(graphite), SiFe, and Al as reductants was investigated under various conditions. The apparent distribution ratio of Cr(L Cr ′^m/s ) in the recovered ...The recovery of metal oxides from stainless steel dust using C(graphite), SiFe, and Al as reductants was investigated under various conditions. The apparent distribution ratio of Cr(L Cr ′^m/s ) in the recovered metal and residual slag phases was defined as the major performance metric. The results show that the recovery ratio of metals increases as the ratio of CaO :SiO2 by mass in the residual slag increases to 1.17. The residual content of metals in the slag decreases as the Al2O3 content of the slag is increased from approximately 8wt% to 10wt%. The recovery ratio of Cr increases with increasing L Cr ′^ m/s , and a linear relationship between L Cr ′^m/s and the activity coefficient ratio of CrO in the slag and the recovered metal phase is observed. The combination of C and SiFe or Al as the reducing agents reveals that Si is the more effective coreductant.展开更多
基金financially supported by the National Natural Science Foundation of China (No. 51474021)the Fundamental Research Funds for the Central Universities of China (No. FRF-SD-12-009A)
文摘The recovery of metal oxides from stainless steel dust using C(graphite), SiFe, and Al as reductants was investigated under various conditions. The apparent distribution ratio of Cr(L Cr ′^m/s ) in the recovered metal and residual slag phases was defined as the major performance metric. The results show that the recovery ratio of metals increases as the ratio of CaO :SiO2 by mass in the residual slag increases to 1.17. The residual content of metals in the slag decreases as the Al2O3 content of the slag is increased from approximately 8wt% to 10wt%. The recovery ratio of Cr increases with increasing L Cr ′^ m/s , and a linear relationship between L Cr ′^m/s and the activity coefficient ratio of CrO in the slag and the recovered metal phase is observed. The combination of C and SiFe or Al as the reducing agents reveals that Si is the more effective coreductant.