In order to meet engineering needs of Chinese underground coal mines,a new dust-collecting fan,a device of dust separated by centrifugal force in driven cyclone passageway(DCCP)was designed.In centrifugal dust removal...In order to meet engineering needs of Chinese underground coal mines,a new dust-collecting fan,a device of dust separated by centrifugal force in driven cyclone passageway(DCCP)was designed.In centrifugal dust removal section(CDRS)of DCCP,a general equation is derived from the principle of force equilibrium.According to CDRS structure parameters and fan running parameters,the general equation is simplified,and the simplest equation is calculated numerically by MATLAB.The calculation results illustrate that increasing quantity of air current is against dust removal,but it is beneficial to dust removal by increasing the radius of driven spiral blade and increasing the particle diameter of coal dust.The conclusions show that the dust-collecting structure parameters coupled with the fan running parameters is a novel optimization approach to dust-collection fan for working and heading faces,which is especially suitable for Chinese underground mines.展开更多
In order to understand the migration law of respirable dust and gain reasonable design parameters for dust control on a super-long double-shearer fully mechanized working face, this paper describes research carried ou...In order to understand the migration law of respirable dust and gain reasonable design parameters for dust control on a super-long double-shearer fully mechanized working face, this paper describes research carried out using a numerical simulation package(Fluent) based on gas-solid coupling dispersed multiphase flow model and field measurement to research different technology modes, dust distribution law at different intervals where shearers work in opposite directions on the lower 9303 face, No. 2 Jining Mine,Yankuang Coal Mining Co. Results show that the concentration of dust 3–6 m away from the shearers working in the same directions was large, while the impact area of respirable dust near the shearer increased significantly to 5–6 m with the distance between two shearers working in opposite directions.The concentration of dust on a double-shearer face was considerably higher than that of a face with one shear under the combined effect of wind speed on the face and disturbed wind around the shearer, while the dust concentration near the shearer on the return side was considerably higher than that on the inlet side. The concentration of dust on a double-shearer face along the airflow declined slowly so that dust was hard to control. Simulation results confirmed the results of field measurement, which could provide reference for dust prevention design.展开更多
基金supported by the National Natural Science Foundation of China and Shenhua Group Corpo-ration Limited(U1361118)the Hunan Provincial Natural Science Foundation of China(13JJ8016)+2 种基金the State Key Laboratory for GeoMechanics and Deep Underground Engineering(SKLG-DUEK1018)the Open Research Fund Program of Hunan Province Key Laboratory of Safe Mining Techniques of Coal Mines(Hunan University of Science and Technology)(201105)the Project of Outstanding(Postgraduate)Dissertation Growth Foundation of HNUST(SNY005).
文摘In order to meet engineering needs of Chinese underground coal mines,a new dust-collecting fan,a device of dust separated by centrifugal force in driven cyclone passageway(DCCP)was designed.In centrifugal dust removal section(CDRS)of DCCP,a general equation is derived from the principle of force equilibrium.According to CDRS structure parameters and fan running parameters,the general equation is simplified,and the simplest equation is calculated numerically by MATLAB.The calculation results illustrate that increasing quantity of air current is against dust removal,but it is beneficial to dust removal by increasing the radius of driven spiral blade and increasing the particle diameter of coal dust.The conclusions show that the dust-collecting structure parameters coupled with the fan running parameters is a novel optimization approach to dust-collection fan for working and heading faces,which is especially suitable for Chinese underground mines.
基金the National Natural Science Foundation of China (No.51404249)the Basic Research Program of Jiangsu Province (No.BK20140201)the Priority Academic Program Development of Jiangsu Higher Education Institutions for financial support provided during this research
文摘In order to understand the migration law of respirable dust and gain reasonable design parameters for dust control on a super-long double-shearer fully mechanized working face, this paper describes research carried out using a numerical simulation package(Fluent) based on gas-solid coupling dispersed multiphase flow model and field measurement to research different technology modes, dust distribution law at different intervals where shearers work in opposite directions on the lower 9303 face, No. 2 Jining Mine,Yankuang Coal Mining Co. Results show that the concentration of dust 3–6 m away from the shearers working in the same directions was large, while the impact area of respirable dust near the shearer increased significantly to 5–6 m with the distance between two shearers working in opposite directions.The concentration of dust on a double-shearer face was considerably higher than that of a face with one shear under the combined effect of wind speed on the face and disturbed wind around the shearer, while the dust concentration near the shearer on the return side was considerably higher than that on the inlet side. The concentration of dust on a double-shearer face along the airflow declined slowly so that dust was hard to control. Simulation results confirmed the results of field measurement, which could provide reference for dust prevention design.