The electrostatic potential caused by a test-charge particle in a positive dust-electron plasma is studied, accounting for the d^Lst-charge fluctuations associated with ultraviolet photoelectron and thermionic emissio...The electrostatic potential caused by a test-charge particle in a positive dust-electron plasma is studied, accounting for the d^Lst-charge fluctuations associated with ultraviolet photoelectron and thermionic emissions. For this purpose, the set of Vlasov-Poisson equations coupled with the dust charging equation is solved by using the space-time Fourier transform technique. As a consequence, a modified dielectric response function is obtained for dust-acoustic waves in a positive dust-electron plasma. By imposing certain conditions on the velocity of the test charge, the electrostatic potential is decomposed into the Deby^Hiickel (DH), wake-field (WF), and far-field (FF) potentials that are significantly modified in the limit of a large dust-charge relaxation rate both analytically and numerically. The results can be helpful for understanding dust crystallization/coagulation in two- component plasmas, where positively charged dust grains are present.展开更多
文摘The electrostatic potential caused by a test-charge particle in a positive dust-electron plasma is studied, accounting for the d^Lst-charge fluctuations associated with ultraviolet photoelectron and thermionic emissions. For this purpose, the set of Vlasov-Poisson equations coupled with the dust charging equation is solved by using the space-time Fourier transform technique. As a consequence, a modified dielectric response function is obtained for dust-acoustic waves in a positive dust-electron plasma. By imposing certain conditions on the velocity of the test charge, the electrostatic potential is decomposed into the Deby^Hiickel (DH), wake-field (WF), and far-field (FF) potentials that are significantly modified in the limit of a large dust-charge relaxation rate both analytically and numerically. The results can be helpful for understanding dust crystallization/coagulation in two- component plasmas, where positively charged dust grains are present.