The Jeans instability in collisional dusty plasmas has been analytically investigated by considering the polarization force effect. Instabilities due to dust-neutral and ion-neutral drags can occur in electrostatic wa...The Jeans instability in collisional dusty plasmas has been analytically investigated by considering the polarization force effect. Instabilities due to dust-neutral and ion-neutral drags can occur in electrostatic waves of collisional dusty plasmas with self-gravitating particles. In this study, the effect of gravitational force on heavy dust particles is considered in tandem with both the polarization and electrostatic forces. The theoretical framework has been developed and the dispersion relation and instability growth rate have been derived, assuming the plane wave approximation. The derived instability growth rate shows that, in collisional dusty plasmas, the Jeans instability strongly depends on the magnitude of the polarization force.展开更多
The velocity shear instability in a magnetized, three-component dusty plasma is investigated for both positively and negatively charged dust particles. The critical shears as a function of the relative charge of dust ...The velocity shear instability in a magnetized, three-component dusty plasma is investigated for both positively and negatively charged dust particles. The critical shears as a function of the relative charge of dust grains for both positively and negatively charged dust grains are in the same form. The instability excitation is easier in colder proton’s environment for positively charged dust, and so also in colder electron’s environment for negatively charged dust. For a certain flow pattern, the instability excites in different direction for different sign of charged dust grains. This conclusion may be helpful in interpreting the helical structures and streamer splitted phenomena in a cometary tail.展开更多
we theoretically investigated the transverse instability of three-dimensional(3D)dust-acoustic solitary waves in a magnetized dusty plasma.First,a 3D nonlinear ZakharovKuznetsov(ZK)equation,which can be used to de...we theoretically investigated the transverse instability of three-dimensional(3D)dust-acoustic solitary waves in a magnetized dusty plasma.First,a 3D nonlinear ZakharovKuznetsov(ZK)equation,which can be used to describe the time-evolution of dust-acoustic solitary waves in magnetized dusty plasmas,is derived by using the reductive perturbation method.Second,we established a numerical scheme to study the transverse instability of the solitary waves described by the ZK equation.It was found that both stable and unstable solitary waves exist.展开更多
In this paper, derived from Maxwell and fluid equations of plasmas, unified nonlinear wave equations are used to describe the parametric decay instability (PDI) in magnetized plasmas, and in view of mode-coupling, w...In this paper, derived from Maxwell and fluid equations of plasmas, unified nonlinear wave equations are used to describe the parametric decay instability (PDI) in magnetized plasmas, and in view of mode-coupling, we can obtain all the possible PDI channels. By solving the nonlinear equations with a mode-coupling method, we obtain the growth rate of the PDI, of which all of the three waves are ordinary mode (O-mode) or extraordinary mode (X-mode) wave. Under the dipole approximation, an explicit formula of the growth rate of the X-mode and the condition of the equilibrium density scale are obtained. According to the existence conditions of three X-mode waves, this kind of instability might exist in ECRH with the second harmonic X-mode wave.展开更多
The filamentation instability was observed in the interaction of two counter-streaming laser ablated plasma flows, which were supersonic, collisionless, and also closely relevant to astrophysical conditions. The plasm...The filamentation instability was observed in the interaction of two counter-streaming laser ablated plasma flows, which were supersonic, collisionless, and also closely relevant to astrophysical conditions. The plasma flows were created by irradiating a pair of oppositely standing plastic (CH) foils with Ins-pulsed laser beams of total energy of 1.7 kJ in two laser spots. With characteristics diagnosed in experiments, the calculated features of Weibel-type filaments are in good agreement with measurements.展开更多
The effects of external magnetized field and nonadiabatic dust charge fluctuation on instability of wave incorporating the nonthermally distributed ions and the temperatures of ion and dust in dusty plasmas are invest...The effects of external magnetized field and nonadiabatic dust charge fluctuation on instability of wave incorporating the nonthermally distributed ions and the temperatures of ion and dust in dusty plasmas are investigated. A linear dispersion relation is obtained. The numerical results show that the external magnetized field, fast ions and nonadiabatic dust charge fluctuation have strong influence on the frequency and the damping of wave.展开更多
We use particle-in-cell,fully electromagnetic,plasma kinetic simulation to study the effect of external magnetic field on electron scale Kelvin–Helmholtz instability(ESKHI).The results are applicable to collisionless...We use particle-in-cell,fully electromagnetic,plasma kinetic simulation to study the effect of external magnetic field on electron scale Kelvin–Helmholtz instability(ESKHI).The results are applicable to collisionless plasmas when,e.g.,solar wind interacts with planetary magnetospheres or a magnetic field is generated in AGN jets.We find that as in the case of magnetohydrodynamic(MHD)KHI,in the kinetic regime,the presence of an external magnetic field reduces the growth rate of the instability.In the MHD case,there is a known threshold magnetic field for KHI stabilization,while for ESKHI this is to be analytically determined.Without a kinetic analytical expression,we use several numerical simulation runs to establish an empirical dependence of ESKHI growth rate,Γ(B_(0))ω_(pe),on the strength of the applied external magnetic field.We find the best fit is hyperbolic,Γ(B_(0))ω_(pe)=Γ_(0)ω_(pe)/(A+BB_(0)),where Γ_(0) is the ESKHI growth rate without an external magnetic field and B_(0)=B_(0)/B_(MHD)is the ratio of external and two-fluid MHD stability threshold magnetic field,derived here.An analytical theory to back up this growth rate dependence on the external magnetic field is needed.The results suggest that in astrophysical settings where a strong magnetic field pre-exists,the generation of an additional magnetic field by the ESKHI is suppressed,which implies that nature provides a“safety valve”—natural protection not to“over-generate”magnetic field by the ESKHI mechanism.Remarkably,we find that our two-fluid MHD threshold magnetic field is the same(up to a factor √γ_(0))as the DC saturation magnetic field,previously predicted by fully kinetic theory.展开更多
This paper analytically investigates the nonlinear behaviour of transverse plasraons in pair plasmas on the basis of the nonlinear governing equations obtained from Vlasov-Maxwell equations. It shows that high frequen...This paper analytically investigates the nonlinear behaviour of transverse plasraons in pair plasmas on the basis of the nonlinear governing equations obtained from Vlasov-Maxwell equations. It shows that high frequency transverse plasmons are modulationally unstable with respect to the uniform state of the pair plasma. Such an instability would cause wave field collapse into a localized region. During the collapse process, ponderomotive expulsion is greatly enhanced for the increase of wave field strength, leading to the formation of localized density cavitons which are significant for the future experimental research in the interaction between high frequency electromagnetic waves and pair plasmas.展开更多
The collective interaction between intense ion beams and plasmas is studied by simulations and experiments,where an intense proton beam produced by a short pulse laser is injected into a pre-ionized gas.It is found th...The collective interaction between intense ion beams and plasmas is studied by simulations and experiments,where an intense proton beam produced by a short pulse laser is injected into a pre-ionized gas.It is found that,depending on its current density,collective effects can significantly alter the propagated ion beam and the stopping power.The quantitative agreement that is found between theories and experiments constitutes the first validation of the collective interaction theory.The effects in the interaction between intense ion beams and background gas plasmas are of importance for the design of laser fusion reactors as well as for beam physics.展开更多
The excitation, growing and damping of current instability is an important and vital subject for a lot of studies through its importance in communication for instance and in understanding the nature of space and the i...The excitation, growing and damping of current instability is an important and vital subject for a lot of studies through its importance in communication for instance and in understanding the nature of space and the interpretation of many phenomena in space and astrophysics. Recent analytical and numerical works are presented to describe and investigate the excitation and growing of kinetic electron-ion two streams instability in anisotropic inhomogeneous dusty space plasmas. We elucidated the thermal effects of plasma species on the characteristics of such instability. It is found that the gradient of space plasma temperature, , is a cause of interesting physical phenomena. Besides, different parameters, such as electron to ion temperature ratio , magnetized plasma and dust grains, are also found to play a crucial role in the growth and depression of such instability.展开更多
A semi-analytical method is introduced to study kink instability in cylindrical plasma with line-tied boundary conditions. The method is based on an expansion for magnetohydrodynamics (MHD) equations in one-dimensio...A semi-analytical method is introduced to study kink instability in cylindrical plasma with line-tied boundary conditions. The method is based on an expansion for magnetohydrodynamics (MHD) equations in one-dimensional (1D) radial eigenvalue problems by using Fourier transforms. The MHD equations then become an ordinary differential equation. This method is applicable to both ideal and non-ideal MHD problem. The effect of plasma pressure (P0) on kink instability is studied in a cylindrical geometry. Complex discrete spectra are pre- sented. Two-dimensional (2D) eigenfunctions with the line-tied boundary conditions are obtained. The growth rate and radial eigenfunctions are different in the two cases of P0 = 0 and P0 ≠ 0, which indicate that the effect of plasma pressure can not be ignored if it is large enough. This method allows us to understand the role of individual radial eigenfunctions, and is also computationally efficient compared to direct solutions of the MHD equations by the finite difference method.展开更多
A three-dimensional (3-D) transient model has been developed to investigate plasma deformation driven by a magnetic field and its influence on arc stability in a circuit breaker. The 3-D distribution of electric cur...A three-dimensional (3-D) transient model has been developed to investigate plasma deformation driven by a magnetic field and its influence on arc stability in a circuit breaker. The 3-D distribution of electric current density is obtained from a current continuity equation along with the generalized Ohm's law; while the magnetic field induced by the current flowing through the arc column is calculated by the magnetic vector potential equation. When gas interacts with an arc column, fundamental factors, such as Ampere's law, Ohm's law, the turbulence model, transport equations of mass, momentum and energy of plasma flow, have to be coupled for aria- lyzing the phenomenon. The coupled interactions between arc and plasma flow are described in the fl'amework of time-dependent magnetohydrodynamic (MHD) equations in conjunction with a K-~ turbulence model. Simulations have been focused on sausage and kink instabilities in plasma (these phenomena are related tO pinch effects and electromagnetic fields). The 3-D sjm- ulation reveals the relation between plasma deformation and instability phenomena, which affect arc stability during circuit breaker operation. Plasma deformation is the consequence of coupled interactions between the electromagnetic force and plasma flow described in simulations.展开更多
The E×B drift instability is studied in Hall thruster using one-dimensional particle in cell(PIC)simulation method.By using the dispersion relation,it is found that unstable modes occur only in discrete bands in ...The E×B drift instability is studied in Hall thruster using one-dimensional particle in cell(PIC)simulation method.By using the dispersion relation,it is found that unstable modes occur only in discrete bands in k space at cyclotron harmonics.The results indicate that the number of unstable modes increases by increasing the external electric field and decreases by increasing the radial magnetic field.The ion mass does not affect the instability wavelength.Furthermore,the results confirm that there is an instability with short wavelength and high frequency.Finally,it is shown that the electron and ion distribution functions deviate from the initial state and eventually the instability is saturated by ion trapping in the azimuthal direction.Also for light mass ion,the frequency and phase velocity are very high that could lead to high electron mobility in the axial direction.展开更多
The laser pulse modulation instabilities in partially stripped plasma were discussed based on the phase and group velocities of the laser pulse and the two processes that modulation instabilities excited. The excitati...The laser pulse modulation instabilities in partially stripped plasma were discussed based on the phase and group velocities of the laser pulse and the two processes that modulation instabilities excited. The excitation condition and growth rate of the modulation instability were obtained. It was found that the positive chirp and competition between normal and abnormal dispersions play important roles in the modulation instability. In the partially stripped plasma, the increased positive chirp enhances the modulation instability, and the dispersion competition reduces it.展开更多
Growth rates of the axisymmetric mode in elongated plasmas in the experimental advanced superconducting tokamak (EAST) are measured with zero feedback gains and then compared with numerically calculated growth rates...Growth rates of the axisymmetric mode in elongated plasmas in the experimental advanced superconducting tokamak (EAST) are measured with zero feedback gains and then compared with numerically calculated growth rates for the reconstructed shapes. The comparison is made after loss of vertical position control. The open-loop growth rates were scanned with the number of vessel eigenmodes, which up to 20 is enough to make the growth rates settled. The agreement between the growth rates measured experimentally and the growth rates determined numerically is good. The results show that a linear RZIP model is essentially good enough for the vertical position feedback control.展开更多
Like the hollow cathode,discharge instability also occurs during the operation of a plasma contactor.Voltage and current probes were employed to test the change of keeper voltage,keeper current,anode voltage,and anode...Like the hollow cathode,discharge instability also occurs during the operation of a plasma contactor.Voltage and current probes were employed to test the change of keeper voltage,keeper current,anode voltage,and anode current parameters with time under different working conditions.The anode current range corresponding to the discharge instability phenomenon is about 0.4 A to 1.2 A,and the emission characteristic curve in this area appears to bulge wherein the four parameters all produce different degrees of oscillation,the anode current oscillation being the greatest.Its waveform is considered to consist of a small-amplitude,high-frequency triangular wave and a large-amplitude,low-frequency sawtooth wave,and we have explained the shape of the wave.Each parameter shows hundreds of Hz in oscillation frequency and the phases of the four parameters appear to be regular.After fast Fourier transform processing,the frequency and amplitude of the main peak of the anode current oscillation tend to change with changes of the anode current,and there are differences in the trends under different keeper currents and xenon flows.展开更多
Floating potential fluctuations of glow discharge magnetized plasma are found to expose mixed mode oscillations(MMOs)in the existence of plasma bubble.Plasma bubble has been formed by emerging density gradient in the ...Floating potential fluctuations of glow discharge magnetized plasma are found to expose mixed mode oscillations(MMOs)in the existence of plasma bubble.Plasma bubble has been formed by emerging density gradient in the form of a sheath around a cylindrical and spherical grid to a critical value of applied potential.Two Langmuir probes,LP1 and LP2,are retained in the ambient plasma to collect the plasma floating potential fluctuations at two different locations of the plasma system.The perceived instability pattern shows regular-irregular-regular MMOs under various imposed conditions.Furthermore,various nonlinear techniques such as phase space plot,recurrence plot and Hurst exponent have been executed to understand the underlying dynamical behavior of the system.Low-frequency(~200–1200 Hz)oscillations are also supposed and are inferred as ion-acoustic waves excited by ionization instability.The observed results are then validated with the theory of the instability based on a fluid hydrodynamic approach.展开更多
Using the reductive perturbation method, we investigate the small amplitude nonlinear acoustic wave in a collisional self-gravitating dusty plasma. The result shows that the small amplitude dust acoustic wave can be e...Using the reductive perturbation method, we investigate the small amplitude nonlinear acoustic wave in a collisional self-gravitating dusty plasma. The result shows that the small amplitude dust acoustic wave can be expressed by a modified Korteweg-de Vries equation, and the nonlinear wave is instable because of the collisions between the neutral gas molecules and the charged particles.展开更多
The Excitation of Alfven wave in dusty plasma with vortex flows is investigated. The coupled equations for density and electromagnetic potential of dusty plasma with vortex-flow were obtained. The stability and amplit...The Excitation of Alfven wave in dusty plasma with vortex flows is investigated. The coupled equations for density and electromagnetic potential of dusty plasma with vortex-flow were obtained. The stability and amplitude behavior were studied both analytically and numerically. Using a non-modal method, it was found that the presence of dust can suppress the growth of the instability which can also be affected by the vortex eccentricity.展开更多
Detailed analysis of the low frequency instability is performed in a linear magnetized steady state plasma device. Identification and modification of the instability are presented.
文摘The Jeans instability in collisional dusty plasmas has been analytically investigated by considering the polarization force effect. Instabilities due to dust-neutral and ion-neutral drags can occur in electrostatic waves of collisional dusty plasmas with self-gravitating particles. In this study, the effect of gravitational force on heavy dust particles is considered in tandem with both the polarization and electrostatic forces. The theoretical framework has been developed and the dispersion relation and instability growth rate have been derived, assuming the plane wave approximation. The derived instability growth rate shows that, in collisional dusty plasmas, the Jeans instability strongly depends on the magnitude of the polarization force.
文摘The velocity shear instability in a magnetized, three-component dusty plasma is investigated for both positively and negatively charged dust particles. The critical shears as a function of the relative charge of dust grains for both positively and negatively charged dust grains are in the same form. The instability excitation is easier in colder proton’s environment for positively charged dust, and so also in colder electron’s environment for negatively charged dust. For a certain flow pattern, the instability excites in different direction for different sign of charged dust grains. This conclusion may be helpful in interpreting the helical structures and streamer splitted phenomena in a cometary tail.
基金supported by National Natural Science Foundation of China(No.11047010)
文摘we theoretically investigated the transverse instability of three-dimensional(3D)dust-acoustic solitary waves in a magnetized dusty plasma.First,a 3D nonlinear ZakharovKuznetsov(ZK)equation,which can be used to describe the time-evolution of dust-acoustic solitary waves in magnetized dusty plasmas,is derived by using the reductive perturbation method.Second,we established a numerical scheme to study the transverse instability of the solitary waves described by the ZK equation.It was found that both stable and unstable solitary waves exist.
基金supported by National Natural Science Foundation of China(Nos.10990214 and 115450)
文摘In this paper, derived from Maxwell and fluid equations of plasmas, unified nonlinear wave equations are used to describe the parametric decay instability (PDI) in magnetized plasmas, and in view of mode-coupling, we can obtain all the possible PDI channels. By solving the nonlinear equations with a mode-coupling method, we obtain the growth rate of the PDI, of which all of the three waves are ordinary mode (O-mode) or extraordinary mode (X-mode) wave. Under the dipole approximation, an explicit formula of the growth rate of the X-mode and the condition of the equilibrium density scale are obtained. According to the existence conditions of three X-mode waves, this kind of instability might exist in ECRH with the second harmonic X-mode wave.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11074297,11674146,and 11220101002)the National Basic Research Program of China(Grant No.2013CBA01500
文摘The filamentation instability was observed in the interaction of two counter-streaming laser ablated plasma flows, which were supersonic, collisionless, and also closely relevant to astrophysical conditions. The plasma flows were created by irradiating a pair of oppositely standing plastic (CH) foils with Ins-pulsed laser beams of total energy of 1.7 kJ in two laser spots. With characteristics diagnosed in experiments, the calculated features of Weibel-type filaments are in good agreement with measurements.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10475066 and 10347006).
文摘The effects of external magnetized field and nonadiabatic dust charge fluctuation on instability of wave incorporating the nonthermally distributed ions and the temperatures of ion and dust in dusty plasmas are investigated. A linear dispersion relation is obtained. The numerical results show that the external magnetized field, fast ions and nonadiabatic dust charge fluctuation have strong influence on the frequency and the damping of wave.
文摘We use particle-in-cell,fully electromagnetic,plasma kinetic simulation to study the effect of external magnetic field on electron scale Kelvin–Helmholtz instability(ESKHI).The results are applicable to collisionless plasmas when,e.g.,solar wind interacts with planetary magnetospheres or a magnetic field is generated in AGN jets.We find that as in the case of magnetohydrodynamic(MHD)KHI,in the kinetic regime,the presence of an external magnetic field reduces the growth rate of the instability.In the MHD case,there is a known threshold magnetic field for KHI stabilization,while for ESKHI this is to be analytically determined.Without a kinetic analytical expression,we use several numerical simulation runs to establish an empirical dependence of ESKHI growth rate,Γ(B_(0))ω_(pe),on the strength of the applied external magnetic field.We find the best fit is hyperbolic,Γ(B_(0))ω_(pe)=Γ_(0)ω_(pe)/(A+BB_(0)),where Γ_(0) is the ESKHI growth rate without an external magnetic field and B_(0)=B_(0)/B_(MHD)is the ratio of external and two-fluid MHD stability threshold magnetic field,derived here.An analytical theory to back up this growth rate dependence on the external magnetic field is needed.The results suggest that in astrophysical settings where a strong magnetic field pre-exists,the generation of an additional magnetic field by the ESKHI is suppressed,which implies that nature provides a“safety valve”—natural protection not to“over-generate”magnetic field by the ESKHI mechanism.Remarkably,we find that our two-fluid MHD threshold magnetic field is the same(up to a factor √γ_(0))as the DC saturation magnetic field,previously predicted by fully kinetic theory.
基金Project supported by the National Basic Research Program of China(Grant No.2010CB635112)the National Natural Science Foundation of China(Grant No.10963002)the International Science and Technology Cooperation Program of China(Grant No.2009DFA02320)
文摘This paper analytically investigates the nonlinear behaviour of transverse plasraons in pair plasmas on the basis of the nonlinear governing equations obtained from Vlasov-Maxwell equations. It shows that high frequency transverse plasmons are modulationally unstable with respect to the uniform state of the pair plasma. Such an instability would cause wave field collapse into a localized region. During the collapse process, ponderomotive expulsion is greatly enhanced for the increase of wave field strength, leading to the formation of localized density cavitons which are significant for the future experimental research in the interaction between high frequency electromagnetic waves and pair plasmas.
基金We acknowledge the support of the LULI technical teams and support from Grant No.E1127 from Region Ile-de-France.S.N.C is supported by the National Science Foundation under Grant No.OISE-1064468This work was partly done within the LABEX Plas@Par project and supported by Grant No.11-IDEX-0004-02 and ANR-17-CE30-0026-Pinnacle from Agence Nationale de la Recherche+2 种基金It has received funding from the European Union's Horizon 2020 Research and Innovation programme under LASERLAB-EUROPE grant agreement No.654148 Laserlab-EuropeThis work has been carried out within the framework of the EUROfusion Consortium and has received funding,through the ToIFE,from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No.633053The views and opinions expressed herein do not necessarily reflect those of the European Commission.This work was also supported in part by JSPS KAKENHI Grant No.15H03758.
文摘The collective interaction between intense ion beams and plasmas is studied by simulations and experiments,where an intense proton beam produced by a short pulse laser is injected into a pre-ionized gas.It is found that,depending on its current density,collective effects can significantly alter the propagated ion beam and the stopping power.The quantitative agreement that is found between theories and experiments constitutes the first validation of the collective interaction theory.The effects in the interaction between intense ion beams and background gas plasmas are of importance for the design of laser fusion reactors as well as for beam physics.
文摘The excitation, growing and damping of current instability is an important and vital subject for a lot of studies through its importance in communication for instance and in understanding the nature of space and the interpretation of many phenomena in space and astrophysics. Recent analytical and numerical works are presented to describe and investigate the excitation and growing of kinetic electron-ion two streams instability in anisotropic inhomogeneous dusty space plasmas. We elucidated the thermal effects of plasma species on the characteristics of such instability. It is found that the gradient of space plasma temperature, , is a cause of interesting physical phenomena. Besides, different parameters, such as electron to ion temperature ratio , magnetized plasma and dust grains, are also found to play a crucial role in the growth and depression of such instability.
基金supported by National Basic Research Program of China (No.2008CB717801)National Natural Science Foundation of China (No.10875024)Laboratory of College and University Program of Liaoning Province of China (No.2008S059)
文摘A semi-analytical method is introduced to study kink instability in cylindrical plasma with line-tied boundary conditions. The method is based on an expansion for magnetohydrodynamics (MHD) equations in one-dimensional (1D) radial eigenvalue problems by using Fourier transforms. The MHD equations then become an ordinary differential equation. This method is applicable to both ideal and non-ideal MHD problem. The effect of plasma pressure (P0) on kink instability is studied in a cylindrical geometry. Complex discrete spectra are pre- sented. Two-dimensional (2D) eigenfunctions with the line-tied boundary conditions are obtained. The growth rate and radial eigenfunctions are different in the two cases of P0 = 0 and P0 ≠ 0, which indicate that the effect of plasma pressure can not be ignored if it is large enough. This method allows us to understand the role of individual radial eigenfunctions, and is also computationally efficient compared to direct solutions of the MHD equations by the finite difference method.
文摘A three-dimensional (3-D) transient model has been developed to investigate plasma deformation driven by a magnetic field and its influence on arc stability in a circuit breaker. The 3-D distribution of electric current density is obtained from a current continuity equation along with the generalized Ohm's law; while the magnetic field induced by the current flowing through the arc column is calculated by the magnetic vector potential equation. When gas interacts with an arc column, fundamental factors, such as Ampere's law, Ohm's law, the turbulence model, transport equations of mass, momentum and energy of plasma flow, have to be coupled for aria- lyzing the phenomenon. The coupled interactions between arc and plasma flow are described in the fl'amework of time-dependent magnetohydrodynamic (MHD) equations in conjunction with a K-~ turbulence model. Simulations have been focused on sausage and kink instabilities in plasma (these phenomena are related tO pinch effects and electromagnetic fields). The 3-D sjm- ulation reveals the relation between plasma deformation and instability phenomena, which affect arc stability during circuit breaker operation. Plasma deformation is the consequence of coupled interactions between the electromagnetic force and plasma flow described in simulations.
文摘The E×B drift instability is studied in Hall thruster using one-dimensional particle in cell(PIC)simulation method.By using the dispersion relation,it is found that unstable modes occur only in discrete bands in k space at cyclotron harmonics.The results indicate that the number of unstable modes increases by increasing the external electric field and decreases by increasing the radial magnetic field.The ion mass does not affect the instability wavelength.Furthermore,the results confirm that there is an instability with short wavelength and high frequency.Finally,it is shown that the electron and ion distribution functions deviate from the initial state and eventually the instability is saturated by ion trapping in the azimuthal direction.Also for light mass ion,the frequency and phase velocity are very high that could lead to high electron mobility in the axial direction.
基金Project supported by the National Natural Science Foundation of China (Grant No 10276002).
文摘The laser pulse modulation instabilities in partially stripped plasma were discussed based on the phase and group velocities of the laser pulse and the two processes that modulation instabilities excited. The excitation condition and growth rate of the modulation instability were obtained. It was found that the positive chirp and competition between normal and abnormal dispersions play important roles in the modulation instability. In the partially stripped plasma, the increased positive chirp enhances the modulation instability, and the dispersion competition reduces it.
基金National Natural Science Foundation of China(No.10725523)
文摘Growth rates of the axisymmetric mode in elongated plasmas in the experimental advanced superconducting tokamak (EAST) are measured with zero feedback gains and then compared with numerically calculated growth rates for the reconstructed shapes. The comparison is made after loss of vertical position control. The open-loop growth rates were scanned with the number of vessel eigenmodes, which up to 20 is enough to make the growth rates settled. The agreement between the growth rates measured experimentally and the growth rates determined numerically is good. The results show that a linear RZIP model is essentially good enough for the vertical position feedback control.
基金financial support from National Natural Science Foundation of China(Nos.11402025,11475019,and 11702123)National Key Laboratory of Science and Technology on Vacuum Technology and Physics(No.ZWK1608)Advanced Space Propulsion Laboratory of BICE and Beijing Engineering Research Center of Efficient and Green Aerospace Propulsion Technology(No.Lab ASP-2018-03)。
文摘Like the hollow cathode,discharge instability also occurs during the operation of a plasma contactor.Voltage and current probes were employed to test the change of keeper voltage,keeper current,anode voltage,and anode current parameters with time under different working conditions.The anode current range corresponding to the discharge instability phenomenon is about 0.4 A to 1.2 A,and the emission characteristic curve in this area appears to bulge wherein the four parameters all produce different degrees of oscillation,the anode current oscillation being the greatest.Its waveform is considered to consist of a small-amplitude,high-frequency triangular wave and a large-amplitude,low-frequency sawtooth wave,and we have explained the shape of the wave.Each parameter shows hundreds of Hz in oscillation frequency and the phases of the four parameters appear to be regular.After fast Fourier transform processing,the frequency and amplitude of the main peak of the anode current oscillation tend to change with changes of the anode current,and there are differences in the trends under different keeper currents and xenon flows.
基金ISRO, Government of India, for providing financial support for the research work (Grant No. ISRO/RES/2/391/2014-15)
文摘Floating potential fluctuations of glow discharge magnetized plasma are found to expose mixed mode oscillations(MMOs)in the existence of plasma bubble.Plasma bubble has been formed by emerging density gradient in the form of a sheath around a cylindrical and spherical grid to a critical value of applied potential.Two Langmuir probes,LP1 and LP2,are retained in the ambient plasma to collect the plasma floating potential fluctuations at two different locations of the plasma system.The perceived instability pattern shows regular-irregular-regular MMOs under various imposed conditions.Furthermore,various nonlinear techniques such as phase space plot,recurrence plot and Hurst exponent have been executed to understand the underlying dynamical behavior of the system.Low-frequency(~200–1200 Hz)oscillations are also supposed and are inferred as ion-acoustic waves excited by ionization instability.The observed results are then validated with the theory of the instability based on a fluid hydrodynamic approach.
基金Project supported by the Initial Research Fund of Shihezi University,China (Grant Nos. RCZX200742 and RCZX200743)
文摘Using the reductive perturbation method, we investigate the small amplitude nonlinear acoustic wave in a collisional self-gravitating dusty plasma. The result shows that the small amplitude dust acoustic wave can be expressed by a modified Korteweg-de Vries equation, and the nonlinear wave is instable because of the collisions between the neutral gas molecules and the charged particles.
基金National Natural Science Foundation of China(Nos.4336052 and 10375063)
文摘The Excitation of Alfven wave in dusty plasma with vortex flows is investigated. The coupled equations for density and electromagnetic potential of dusty plasma with vortex-flow were obtained. The stability and amplitude behavior were studied both analytically and numerically. Using a non-modal method, it was found that the presence of dust can suppress the growth of the instability which can also be affected by the vortex eccentricity.
基金supported by the National Natural Science Foundation of China(No.10275065)in part by the JSPS-CAS Core University Program in the field of Plasma and Nuclear Fusion
文摘Detailed analysis of the low frequency instability is performed in a linear magnetized steady state plasma device. Identification and modification of the instability are presented.