The Internet of Things(IoT)has witnessed a significant surge in adoption,particularly through the utilization of Wireless Sensor Networks(WSNs),which comprise small internet-connected devices.These deployments span va...The Internet of Things(IoT)has witnessed a significant surge in adoption,particularly through the utilization of Wireless Sensor Networks(WSNs),which comprise small internet-connected devices.These deployments span various environments and offer a multitude of benefits.However,the widespread use of battery-powered devices introduces challenges due to their limited hardware resources and communication capabilities.In response to this,the Internet Engineering Task Force(IETF)has developed the IPv6 Routing Protocol for Low-power and Lossy Networks(RPL)to address the unique requirements of such networks.Recognizing the critical role of RPL in maintaining high performance,this paper proposes a novel approach to optimizing power consumption.Specifically,it introduces a developed sensor motes topology integrated with a Radio Duty Cycling(RDC)mechanism aimed at minimizing power usage.Through rigorous analysis,the paper evaluates the power efficiency of this approach through several simulations conducted across different network topologies,including random,linear,tree,and elliptical topologies.Additionally,three distinct RDC mechanisms—CXMAC,ContikiMAC,and NullRDC—are investigated to assess their impact on power consumption.The findings of the study,based on a comprehensive and deep analysis of the simulated results,highlight the efficiency of ContikiMAC in power conservation.This research contributes valuable insights into enhancing the energy efficiency of RPL-based IoT networks,ultimately facilitating their widespread deployment and usability in diverse environments.展开更多
In view of the large current peak and torque ripple in the actual current chopping control of switched reluctance motor,a segmented PWM duty cycle analysis method of switched reluctance motor based on current chopping...In view of the large current peak and torque ripple in the actual current chopping control of switched reluctance motor,a segmented PWM duty cycle analysis method of switched reluctance motor based on current chopping control is proposed in this paper.The method realizes the control of the winding current by adjusting the average voltage of the two ends of the winding in one cycle through the PWM duty cycle.At the same time,according to the inductance linear model,the conduction phase is divided into a small inductance region and an inductance rising region,and the analytical formulas of PWM duty cycle in the two regions are deduced respectively.Finally,through matlab/simulink simulation and motor platform experiment,the current chopping control is compared with the segmented PWM duty cycle analysis method in this paper.Simulation and experimental results show that the segmented PWM duty cycle analysis method can effectively reduce the current peak and torque ripple,and has high practical application value.展开更多
With the expansion of the application range and network scale of wireless sensor networks in recent years,WSNs often generate data surges and delay queues during the transmission process,causing network paralysis,even...With the expansion of the application range and network scale of wireless sensor networks in recent years,WSNs often generate data surges and delay queues during the transmission process,causing network paralysis,even resulting in local or global congestion.In this paper,a dynamically Adjusted Duty Cycle for Optimized Congestion based on a real-time Queue Length(ADCOC)scheme is proposed.In order to improve the resource utilization rate of network nodes,we carried out optimization analysis based on the theory and applied it to the adjustment of the node’s duty cycle strategy.Using this strategy to ensure that the network lifetime remains the same,can minimize system delay and maximize energy efficiency.Firstly,the problems of the existing RED algorithm are analyzed.We introduce the improved SIG-RED algorithm into the ADCOC mechanism.As the data traffic changes,the RED protocol cannot automatically adjust the duty cycle.A scheduler is added to the buffer area manager,referring to a weighted index of network congestion,which can quickly determine the status of network congestion.The value of the weighting coefficient W is adjusted by the Bayesian method.The scheduler preferably transmits severely urgent data,alleviating the memory load.Then we combined improved data fusion technology and information gain methods to adjust the duty cycle dynamically.By simulating the algorithm,it shows that it has faster convergence speed and smaller queue jitter.Finally,we combine the adjusted congestion weight and the duty cycle growth value to adjust the data processing rate capability in the real-time network by dynamically adjusting it to adapt to bursts of data streams.Thus,the frequency of congestion is reduced to ensure that the system has higher processing efficiency and good adaptability.展开更多
Duty-cycle modulation alternately blowing from two opposite-facing plasma actu- ators on the leeward surface near the apex of a cone with a 10° semi-apex angle is adopted to control mean lateral force and moment,...Duty-cycle modulation alternately blowing from two opposite-facing plasma actu- ators on the leeward surface near the apex of a cone with a 10° semi-apex angle is adopted to control mean lateral force and moment, and the flow control mechanisms are presented. Pressure distributions over the forebody of the cone are measured by steady pressure tappings. The experiments are performed in a 3.0×1.6 m open-circuit wind tunnel at a wind speed of 20 m/s, a 45° angle of attack and a Reynolds number of 2×10^5, based on the diameter of the base of the cone. Almost linearly proportional control of the lateral forces and moments over a slender conical forebody at a high angle of attack has been demonstrated by employing a pair of single dielectric barrier discharge plasma actuators near the apex of the cone, combined with a duty-cycle tech- nique. The pressure distribution measurements indicate that the hi-stable vortex pattern appears to be shifted in the opposite direction when the port or starboard actuator is activated, while the other is kept off during the test. It is shown that the reduced pulse-repetition frequency based on the local diameter at the plasma actuator equal to one yields the highest effectiveness among the cases considered.展开更多
The duty cycling process involves turning a radio into an active and dormant state for conserving energy. It is a promising approach for designing routing protocols for a resource-constrained Wireless Sensor Networks ...The duty cycling process involves turning a radio into an active and dormant state for conserving energy. It is a promising approach for designing routing protocols for a resource-constrained Wireless Sensor Networks (WSNs). In the duty cycle-based WSNs, the network lifetime is improved and the network transmission is increased as compared to conventional routing protocols. In this study, the active period of the duty cycle is divided into slots that can minimize the idle listening problem. The slot scheduling technique helps determine the most efficient node that uses the active period. The proposed routing protocol uses the opportunistic concept to minimize the sender waiting problem. Therefore, the forwarder set will be selected according to the node's residual active time and energy. Further, the optimum routing path is selected to achieve the minimum forwarding delay from the source to the destination. Simulation analysis reveals that the proposed routing scheme outperforms existing schemes in terms of the average transmission delay, energy consumption, and network throughput.展开更多
Many Wireless Sensor Network (WSN) systems are deployed in unattended areas using non-rechargeable batteries.To enable sustainable operations,most WSN systems employ duty-cycling mechanisms,such as Low Power Listening...Many Wireless Sensor Network (WSN) systems are deployed in unattended areas using non-rechargeable batteries.To enable sustainable operations,most WSN systems employ duty-cycling mechanisms,such as Low Power Listening (LPL).For reliable delivery of each packet with LPL,the sender has to transmit a preamble that is long enough to span over a complete sleep interval of the receiver.In this way,the sensor nodes avoid idle listening,however,at the cost of remarkably increased end-to-end delay of multi-hop packet transmissions.To address this issue,in this paper we propose a new duty-cycling mechanism called DC-Gear.DC-Gear exploits a "sleep less but save more" phenomenon,which means increasing the duty cycle in a timely and appropriate manner whileminimizing the overall energy cost and satisfying the end-to-end delay constraint.We have implemented DC-Gear with TelosB motes and demonstrated its performance advantages through extensive experiments.展开更多
Using a plexiglas plate model, the performance of peristaltic flow acceleration in- duced by multiple DBD (dielectric barrier discharge) plasma actuators was studied based on PIV (particle image velocimetry). The ...Using a plexiglas plate model, the performance of peristaltic flow acceleration in- duced by multiple DBD (dielectric barrier discharge) plasma actuators was studied based on PIV (particle image velocimetry). The asynchronous and the duty cycle pulsed actuation modes were proposed and tested. The velocity fields induced by multiple DBD plasma actuators with different phase angles and duty cycle ratios were acquired and the momentum transfer characteristics of the flow field were discussed. Consequently, the mechanism of the peristalsis-acceleration multi- ple DBD plasma actuation was analyzed. The results show that the peristaltic flow acceleration effect of multiple plasma actuators occurs mainly in paraelectric direction, and the mechanism of peristaltic flow acceleration is ejection pushing effect rather than injection pumping effect. The asynchronous and the duty cycle pulsed actuation modes can, with energy consumption increase of merely 10%, achieve 65% and 42% increase of downstream velocity, and thus are promising in velocity improvement and energy saving.展开更多
The paper approaches the problem of the command functions of galvanometer-based scanners (GS) that are necessary to produce the linear plus parabolic scanning function of the GS, which we have proved previously to p...The paper approaches the problem of the command functions of galvanometer-based scanners (GS) that are necessary to produce the linear plus parabolic scanning function of the GS, which we have proved previously to produce the highest possible duty cycle (i.e., time efficiency) of the device. We have completed this theoretical aspect (which contradicted what has been stated previously in the literature, where it has been considered that the linear plus sinusoidal scanning function was the best) with the experimental study of the most used scanning functions of the GSs (sawtooth, sinusoidal and triangular), with applications in biomedical imaging, in particular in optical coherence tomography, demonstrating that the triangular function is always the best one to be applied, from both an optical and a mechanical point of view. In the present study the input voltage/command function which should be applied to the GS to produce the desired triangular scanning function (with controlled non-linearity for the fastest possible stop-and-turn portions) was determined analytically, in relationship with the active torque that drives the device. This command function is analyzed with regard to the specific, respectively required parameters of the GS: natural frequency and damping factor, respectively scan speed and amplitude. The modeling in an open loop control structure of the GS is finally discussed as a trade-off between using the highest possible duty cycle and minimizing the maximum peaks of the input voltage.展开更多
Unsteady dielectric barrier discharge(DBD) plasma aerodynamic actuation technology is employed to suppress airfoil stall separation and the technical parameters are explored with wind tunnel experiments on an NACA00...Unsteady dielectric barrier discharge(DBD) plasma aerodynamic actuation technology is employed to suppress airfoil stall separation and the technical parameters are explored with wind tunnel experiments on an NACA0015 airfoil by measuring the surface pressure distribution of the airfoil.The performance of the DBD aerodynamic actuation for airfoil stall separation suppression is evaluated under DBD voltages from 2000 V to 4000 V and the duty cycles varied in the range of 0.1 to 1.0.It is found that higher lift coefficients and lower threshold voltages are achieved under the unsteady DBD aerodynamic actuation with the duty cycles less than 0.5as compared to that of the steady plasma actuation at the same free-stream speeds and attack angles,indicating a better flow control performance.By comparing the lift coefficients and the threshold voltages,an optimum duty cycle is determined as 0.25 by which the maximum lift coefficient and the minimum threshold voltage are obtained at the same free-stream speed and attack angle.The non-uniform DBD discharge with stronger discharge in the positive half cycle due to electrons deposition on the dielectric slabs and the suppression of opposite momentum transfer due to the intermittent discharge with cutoff of the negative half cycle are responsible for the observed optimum duty cycle.展开更多
Low-duty-cycle mechanisms can reduce the energy consumption significantly in wireless sensor networks(WSNs). Sensors stay dormant most of the time to save their energy and wake up based on their needs. However, such...Low-duty-cycle mechanisms can reduce the energy consumption significantly in wireless sensor networks(WSNs). Sensors stay dormant most of the time to save their energy and wake up based on their needs. However, such a technique, while prolonging the network lifetime, sets excessive challenges for reducing the end-to-end(E2E) delay within the network. In this paper, the centralized cluster-based location finding(CCLF) algorithm is proposed to reduce the high latency in low-duty-cycle WSNs by finding a suitable position for the sink. The algorithm is mainly composed of three steps: a) the cluster construction, b) the fast look-up table(FLU-table) construction, and c) the sink location decision. The simulation results show that the performance of the CCLF algorithm is significantly similar to that of the optimal algorithm. Moreover, the CCLF algorithm requires less operation time compared with the optimal algorithm.展开更多
We present a cold atom system with a dark-line two-dimensional magneto-optical trap, to increase the atomic density by suppressing the atomic radiation pressure. Optical depth (OD) and duty cycle are used to evaluat...We present a cold atom system with a dark-line two-dimensional magneto-optical trap, to increase the atomic density by suppressing the atomic radiation pressure. Optical depth (OD) and duty cycle are used to evaluate the system performance. We demonstrate a 100% increase in OD with the dark line, and obtain an ultrahigh OD of 264 with 10% for the duty cycle. Also, with an efficient dark line region, the OD could maintain above i00 with duty cycle as high as 30%. The cold atomic ensemble with an ultrahigh OD with a 10%-30% duty cycle is particularly advantageous in quantum i^formation processing and communication.展开更多
A two-input boost converter with voltage multiplier cell is proposed in this paper. Then a family of two-input converters with and without voltage multiplier cell are derived and their results are compared to achieve ...A two-input boost converter with voltage multiplier cell is proposed in this paper. Then a family of two-input converters with and without voltage multiplier cell are derived and their results are compared to achieve high voltage gain, low duty cycle, and reduced voltage stress. From the analysis of different topologies, a modified two-input converter with two-stage voltage multiplier cell has good operating characteristics. The switch voltage stress and duty cycle of the modified converter is significantly very less than that of the other converter topologies. The modified DC-DC converter with 50% duty cycle achieves a voltage gain of 10 and the results are verified by using MATLAB/Simulink software.展开更多
Wake-up radio (WuR) system is often presented as the best candidate for replacing traditional duty cycled Medium Access Control (MAC) protocols in Wireless Sensor Networks (WSNs). The Double Radio (DoRa) protocol is a...Wake-up radio (WuR) system is often presented as the best candidate for replacing traditional duty cycled Medium Access Control (MAC) protocols in Wireless Sensor Networks (WSNs). The Double Radio (DoRa) protocol is a new MAC protocol for in-band WuR system with addressing capabilities. While the DoRa protocol improves the WSNs energy efficiency, it still suffers from an overhearing problem when the WuR system is very often requested. The WuR wastes a noticeable amount of energy when overhearing to wake-up demand intended to other nodes, but it is neither measured nor solved in other works. In this paper, an adaptive duty-cycled DoRa (DC-DoRa) is then proposed to solve the overhearing problem. The primary concept of the work is to enable the WuR functionality before the node is addressed and to disable the WuR after the node sent data. Extensive simulations under OMNeT++ using real input parameters are then performed to show the significant energy-savings through the two protocols and the nearly suppression of overhearing with DC-DoRa. In fact, the mean power consumption is three-order below using the DoRa protocol compared to traditional MAC protocols. While overhearing can represent up to 93% of the WuR energy consumption with the DoRa protocol, it is reduced to only 1% with the DC-DoRa protocol.展开更多
The quadratic boost is studied under its real model. The equations, of the continuous conduction mode, descriptive of this model are established. From these equations, the expressions of the voltage gain and the effic...The quadratic boost is studied under its real model. The equations, of the continuous conduction mode, descriptive of this model are established. From these equations, the expressions of the voltage gain and the efficiency are extracted. These two quantities are plotted as a function of the duty cycle in order to appreciate them in different operating points of the transistor. The values of the different components have also been extracted for the fabrication of a prototype of the converter. Thanks to a set of experimental measurements at the input as well as at the output of the prototype converter, the voltage gain and the efficiency could also be observed. These were also plotted for different loads to observe converter behavior. The theoretical curves were compared with the experimental curves which allowed to validate the proposed mathematical models on a large range of duty cycles.展开更多
To prevent sub-harmonic oscillation and improve the stability and load capacity of the system,a piecewise linear slope compensation circuit is designed. Compared with the traditional design, this circuit provides a co...To prevent sub-harmonic oscillation and improve the stability and load capacity of the system,a piecewise linear slope compensation circuit is designed. Compared with the traditional design, this circuit provides a compensation signal whose slope varies from different duty cycles at - 40-85℃ ,and reduces the negative effect of slope compensation on the system's load capacity and transient response. A current mode PWM Boost DC-DC converter employing this slope compensation circuit is implemented in a UMC 0.6μm-BCD process. The results indicate that the circuit works well and effectively,and the load capacity is increased by 20%. The chip area of the piecewise linear slope compensation circuit is 0.01mm^2 ,which consumes only 8μA quiescent current,and the efficiency ranges up to 93%.展开更多
Micro-arc oxidation (MAO) process was carried out on AZ91D alloy in alkaline borate solution using an alternative square-wave power source with different parameters. The effects of voltage, frequency and duty cycle ...Micro-arc oxidation (MAO) process was carried out on AZ91D alloy in alkaline borate solution using an alternative square-wave power source with different parameters. The effects of voltage, frequency and duty cycle on the coatings were investigated by orthogonal experiment. It is found that the thickness of coatings increases with the increase of voltage and duty cycle, but decreases with the increase of frequency. The structure and morphology of the coatings also depend on voltage, frequency and duty cycle. The coatings become more porous and crack with increasing voltage and duty cycle. The coating is thin and transparent when the voltage is lower than 120 V. The corrosion resistances of different coatings were evaluated by polarization curves and electrochemical impedance spectroscopy (EIS) in 3.5% NaCl (mass fraction) solution. When the optimized values of voltage, frequency and duty cycle are 140 V, 2 000 Hz and 0.4, respectively, the anodic coating shows the best corrosion resistance.展开更多
A novel SPIC(smart power IC) with a simple APFC(active power factor correction) circuit on one chip is proposed.The V _ bus (bus voltage) with high power factor falls from 600V to 400V by using a delay circuit in w...A novel SPIC(smart power IC) with a simple APFC(active power factor correction) circuit on one chip is proposed.The V _ bus (bus voltage) with high power factor falls from 600V to 400V by using a delay circuit in which a long channel length NMOS is used to substitute a large biasing resistance to save chip area.The lower V _ bus results in a smaller R _ on (on-resistance) of power switcher,which reduces the power loss of the power devices,improves the efficiency of the circuit,and reduces the cost of circuits.An integrated high voltage over voltage protect circuit is also designed in the circuits.Theory and simulations both prove the correctness and availability of the design.展开更多
The effects of pulse frequency f and duty cycle r on the deposition rate, composition, morphology, and hardness of pulse electrodeposited RE (rare earth)-Ni-W-P-SiC composite coatings have been studied. The results ...The effects of pulse frequency f and duty cycle r on the deposition rate, composition, morphology, and hardness of pulse electrodeposited RE (rare earth)-Ni-W-P-SiC composite coatings have been studied. The results indicate that pulse current can improve the deposition rate of RE-Ni-W-P-SiC composite coatings; W, P, and SiC contents in the coating decrease with the increase of pulse frequency and reach the lowest value at f = 33Hz, whereas the RE content in the composite coatings increases with the increase of pulse frequency. SiC content decreases with the increase of duty cycle, W content reaches the lowest value, and P content reaches the highest value at r = 0.4; pulse current and RE can lead to smaller size of the crystalline grains; however, the effects of different pulse frequency and duty cycle on the morphologies of RE-Ni-W-P-SiC composite coatings are not obvious. The hardness of RE-Ni-W-P-SiC composite coatings is the highest when the duty cycle is at 0.6 and 0.8 and pulse frequency is at 50Hz. At the same pulse frequency, the hardness of RE-Ni-W-P-SiC composite coatings at r= 0.8 is higher than that at r= 0.6.展开更多
Effects of current density, duty cycle and frequency on microstructure and particles content of electrodeposited Co-BN (hexagonal) nano composite coatings were analyzed by SEM, FESEM, EDS, AFM and XRD techniques. Th...Effects of current density, duty cycle and frequency on microstructure and particles content of electrodeposited Co-BN (hexagonal) nano composite coatings were analyzed by SEM, FESEM, EDS, AFM and XRD techniques. The microhardness, tribological behavior and wear mechanism were also investigated. Generally, as the current density and frequency increased, the particles content and microhardness of the coatings increased firstly and then decreased. Moreover, by reducing duty cycle, more particles were incorporated and higher microhardness was obtained. The best tribological behavior was achieved under the conditions duty cycle of 10%, frequency of 50 Hz and current density of 100 mA/cm2.展开更多
Modular multilevel resonant converter is an promising candidate for high voltage applications since it has advantageous features,such as high efficiency,high voltage capability and easy fault-tolerant operation.Howeve...Modular multilevel resonant converter is an promising candidate for high voltage applications since it has advantageous features,such as high efficiency,high voltage capability and easy fault-tolerant operation.However,the inequality of arm inductance in practice will lead to imbalance between the upper and lower arm voltages,which will induce large ripples in the circulating current and a dc bias on the voltage generated by modular circuits.To compensate for the voltage imbalance,effects of arm duty cycle changes on arm voltages are discussed.An arm voltage balancing control method is proposed:adjust arm duty cycle according to arm voltage deviation in every switching cycle.Simulation and experimental results are presented to validate the theoretical analysis and the proposed control method.展开更多
文摘The Internet of Things(IoT)has witnessed a significant surge in adoption,particularly through the utilization of Wireless Sensor Networks(WSNs),which comprise small internet-connected devices.These deployments span various environments and offer a multitude of benefits.However,the widespread use of battery-powered devices introduces challenges due to their limited hardware resources and communication capabilities.In response to this,the Internet Engineering Task Force(IETF)has developed the IPv6 Routing Protocol for Low-power and Lossy Networks(RPL)to address the unique requirements of such networks.Recognizing the critical role of RPL in maintaining high performance,this paper proposes a novel approach to optimizing power consumption.Specifically,it introduces a developed sensor motes topology integrated with a Radio Duty Cycling(RDC)mechanism aimed at minimizing power usage.Through rigorous analysis,the paper evaluates the power efficiency of this approach through several simulations conducted across different network topologies,including random,linear,tree,and elliptical topologies.Additionally,three distinct RDC mechanisms—CXMAC,ContikiMAC,and NullRDC—are investigated to assess their impact on power consumption.The findings of the study,based on a comprehensive and deep analysis of the simulated results,highlight the efficiency of ContikiMAC in power conservation.This research contributes valuable insights into enhancing the energy efficiency of RPL-based IoT networks,ultimately facilitating their widespread deployment and usability in diverse environments.
基金supported by National Natural Science Foundation of China under Grant 52167005Science and Technology Research Project of Jiangxi Provincial Department of Education under Grant GJJ200826。
文摘In view of the large current peak and torque ripple in the actual current chopping control of switched reluctance motor,a segmented PWM duty cycle analysis method of switched reluctance motor based on current chopping control is proposed in this paper.The method realizes the control of the winding current by adjusting the average voltage of the two ends of the winding in one cycle through the PWM duty cycle.At the same time,according to the inductance linear model,the conduction phase is divided into a small inductance region and an inductance rising region,and the analytical formulas of PWM duty cycle in the two regions are deduced respectively.Finally,through matlab/simulink simulation and motor platform experiment,the current chopping control is compared with the segmented PWM duty cycle analysis method in this paper.Simulation and experimental results show that the segmented PWM duty cycle analysis method can effectively reduce the current peak and torque ripple,and has high practical application value.
基金This work is supported by“National Science Foundation of Hunan Province,China”under Grant 2020JJ4757.
文摘With the expansion of the application range and network scale of wireless sensor networks in recent years,WSNs often generate data surges and delay queues during the transmission process,causing network paralysis,even resulting in local or global congestion.In this paper,a dynamically Adjusted Duty Cycle for Optimized Congestion based on a real-time Queue Length(ADCOC)scheme is proposed.In order to improve the resource utilization rate of network nodes,we carried out optimization analysis based on the theory and applied it to the adjustment of the node’s duty cycle strategy.Using this strategy to ensure that the network lifetime remains the same,can minimize system delay and maximize energy efficiency.Firstly,the problems of the existing RED algorithm are analyzed.We introduce the improved SIG-RED algorithm into the ADCOC mechanism.As the data traffic changes,the RED protocol cannot automatically adjust the duty cycle.A scheduler is added to the buffer area manager,referring to a weighted index of network congestion,which can quickly determine the status of network congestion.The value of the weighting coefficient W is adjusted by the Bayesian method.The scheduler preferably transmits severely urgent data,alleviating the memory load.Then we combined improved data fusion technology and information gain methods to adjust the duty cycle dynamically.By simulating the algorithm,it shows that it has faster convergence speed and smaller queue jitter.Finally,we combine the adjusted congestion weight and the duty cycle growth value to adjust the data processing rate capability in the real-time network by dynamically adjusting it to adapt to bursts of data streams.Thus,the frequency of congestion is reduced to ensure that the system has higher processing efficiency and good adaptability.
基金supported by the Specialized Research Fund for Doctoral Program of Higher Education,SPFDP-200806990003the Foundation for Fundamental Research of the Northwestern Polytechnical University,NPU-FFR-W018102
文摘Duty-cycle modulation alternately blowing from two opposite-facing plasma actu- ators on the leeward surface near the apex of a cone with a 10° semi-apex angle is adopted to control mean lateral force and moment, and the flow control mechanisms are presented. Pressure distributions over the forebody of the cone are measured by steady pressure tappings. The experiments are performed in a 3.0×1.6 m open-circuit wind tunnel at a wind speed of 20 m/s, a 45° angle of attack and a Reynolds number of 2×10^5, based on the diameter of the base of the cone. Almost linearly proportional control of the lateral forces and moments over a slender conical forebody at a high angle of attack has been demonstrated by employing a pair of single dielectric barrier discharge plasma actuators near the apex of the cone, combined with a duty-cycle tech- nique. The pressure distribution measurements indicate that the hi-stable vortex pattern appears to be shifted in the opposite direction when the port or starboard actuator is activated, while the other is kept off during the test. It is shown that the reduced pulse-repetition frequency based on the local diameter at the plasma actuator equal to one yields the highest effectiveness among the cases considered.
文摘The duty cycling process involves turning a radio into an active and dormant state for conserving energy. It is a promising approach for designing routing protocols for a resource-constrained Wireless Sensor Networks (WSNs). In the duty cycle-based WSNs, the network lifetime is improved and the network transmission is increased as compared to conventional routing protocols. In this study, the active period of the duty cycle is divided into slots that can minimize the idle listening problem. The slot scheduling technique helps determine the most efficient node that uses the active period. The proposed routing protocol uses the opportunistic concept to minimize the sender waiting problem. Therefore, the forwarder set will be selected according to the node's residual active time and energy. Further, the optimum routing path is selected to achieve the minimum forwarding delay from the source to the destination. Simulation analysis reveals that the proposed routing scheme outperforms existing schemes in terms of the average transmission delay, energy consumption, and network throughput.
基金supported by the National Basic Research Program of China(Grant No.2011CB302705)the National Natural Science Fourdation of China(60970123)
文摘Many Wireless Sensor Network (WSN) systems are deployed in unattended areas using non-rechargeable batteries.To enable sustainable operations,most WSN systems employ duty-cycling mechanisms,such as Low Power Listening (LPL).For reliable delivery of each packet with LPL,the sender has to transmit a preamble that is long enough to span over a complete sleep interval of the receiver.In this way,the sensor nodes avoid idle listening,however,at the cost of remarkably increased end-to-end delay of multi-hop packet transmissions.To address this issue,in this paper we propose a new duty-cycling mechanism called DC-Gear.DC-Gear exploits a "sleep less but save more" phenomenon,which means increasing the duty cycle in a timely and appropriate manner whileminimizing the overall energy cost and satisfying the end-to-end delay constraint.We have implemented DC-Gear with TelosB motes and demonstrated its performance advantages through extensive experiments.
基金supported by National Natural Science Foundation of China(No.51107101)the Foundation for Fundamental Research of the Northwestern Polytechnical University of China(JC201103)
文摘Using a plexiglas plate model, the performance of peristaltic flow acceleration in- duced by multiple DBD (dielectric barrier discharge) plasma actuators was studied based on PIV (particle image velocimetry). The asynchronous and the duty cycle pulsed actuation modes were proposed and tested. The velocity fields induced by multiple DBD plasma actuators with different phase angles and duty cycle ratios were acquired and the momentum transfer characteristics of the flow field were discussed. Consequently, the mechanism of the peristalsis-acceleration multi- ple DBD plasma actuation was analyzed. The results show that the peristaltic flow acceleration effect of multiple plasma actuators occurs mainly in paraelectric direction, and the mechanism of peristaltic flow acceleration is ejection pushing effect rather than injection pumping effect. The asynchronous and the duty cycle pulsed actuation modes can, with energy consumption increase of merely 10%, achieve 65% and 42% increase of downstream velocity, and thus are promising in velocity improvement and energy saving.
基金the support of the US Department of State through Fulbright Scholar Grant 474/2009
文摘The paper approaches the problem of the command functions of galvanometer-based scanners (GS) that are necessary to produce the linear plus parabolic scanning function of the GS, which we have proved previously to produce the highest possible duty cycle (i.e., time efficiency) of the device. We have completed this theoretical aspect (which contradicted what has been stated previously in the literature, where it has been considered that the linear plus sinusoidal scanning function was the best) with the experimental study of the most used scanning functions of the GSs (sawtooth, sinusoidal and triangular), with applications in biomedical imaging, in particular in optical coherence tomography, demonstrating that the triangular function is always the best one to be applied, from both an optical and a mechanical point of view. In the present study the input voltage/command function which should be applied to the GS to produce the desired triangular scanning function (with controlled non-linearity for the fastest possible stop-and-turn portions) was determined analytically, in relationship with the active torque that drives the device. This command function is analyzed with regard to the specific, respectively required parameters of the GS: natural frequency and damping factor, respectively scan speed and amplitude. The modeling in an open loop control structure of the GS is finally discussed as a trade-off between using the highest possible duty cycle and minimizing the maximum peaks of the input voltage.
基金supported by National Natural Science Foundation of China(No.21276036)Liaoning Provincial Natural Science Foundation of China(No.2015020123)the Fundamental Research Funds for the Central Universities of China(No.3132015154)
文摘Unsteady dielectric barrier discharge(DBD) plasma aerodynamic actuation technology is employed to suppress airfoil stall separation and the technical parameters are explored with wind tunnel experiments on an NACA0015 airfoil by measuring the surface pressure distribution of the airfoil.The performance of the DBD aerodynamic actuation for airfoil stall separation suppression is evaluated under DBD voltages from 2000 V to 4000 V and the duty cycles varied in the range of 0.1 to 1.0.It is found that higher lift coefficients and lower threshold voltages are achieved under the unsteady DBD aerodynamic actuation with the duty cycles less than 0.5as compared to that of the steady plasma actuation at the same free-stream speeds and attack angles,indicating a better flow control performance.By comparing the lift coefficients and the threshold voltages,an optimum duty cycle is determined as 0.25 by which the maximum lift coefficient and the minimum threshold voltage are obtained at the same free-stream speed and attack angle.The non-uniform DBD discharge with stronger discharge in the positive half cycle due to electrons deposition on the dielectric slabs and the suppression of opposite momentum transfer due to the intermittent discharge with cutoff of the negative half cycle are responsible for the observed optimum duty cycle.
基金supported in part by NSC under Grant No.NSC 100-2628-E-006-028-MY3,100-2221-E-006-136-MY2,and 101-2221-E-006-247-MY3
文摘Low-duty-cycle mechanisms can reduce the energy consumption significantly in wireless sensor networks(WSNs). Sensors stay dormant most of the time to save their energy and wake up based on their needs. However, such a technique, while prolonging the network lifetime, sets excessive challenges for reducing the end-to-end(E2E) delay within the network. In this paper, the centralized cluster-based location finding(CCLF) algorithm is proposed to reduce the high latency in low-duty-cycle WSNs by finding a suitable position for the sink. The algorithm is mainly composed of three steps: a) the cluster construction, b) the fast look-up table(FLU-table) construction, and c) the sink location decision. The simulation results show that the performance of the CCLF algorithm is significantly similar to that of the optimal algorithm. Moreover, the CCLF algorithm requires less operation time compared with the optimal algorithm.
基金Supported by the National Natural Science Foundation of China under Grant Nos 91436211 and 11204086the National Basic Research Program of China under Grant No 2011CB921604the Shanghai Science and Technology Committee under Grant No 13PJ1402100
文摘We present a cold atom system with a dark-line two-dimensional magneto-optical trap, to increase the atomic density by suppressing the atomic radiation pressure. Optical depth (OD) and duty cycle are used to evaluate the system performance. We demonstrate a 100% increase in OD with the dark line, and obtain an ultrahigh OD of 264 with 10% for the duty cycle. Also, with an efficient dark line region, the OD could maintain above i00 with duty cycle as high as 30%. The cold atomic ensemble with an ultrahigh OD with a 10%-30% duty cycle is particularly advantageous in quantum i^formation processing and communication.
文摘A two-input boost converter with voltage multiplier cell is proposed in this paper. Then a family of two-input converters with and without voltage multiplier cell are derived and their results are compared to achieve high voltage gain, low duty cycle, and reduced voltage stress. From the analysis of different topologies, a modified two-input converter with two-stage voltage multiplier cell has good operating characteristics. The switch voltage stress and duty cycle of the modified converter is significantly very less than that of the other converter topologies. The modified DC-DC converter with 50% duty cycle achieves a voltage gain of 10 and the results are verified by using MATLAB/Simulink software.
文摘Wake-up radio (WuR) system is often presented as the best candidate for replacing traditional duty cycled Medium Access Control (MAC) protocols in Wireless Sensor Networks (WSNs). The Double Radio (DoRa) protocol is a new MAC protocol for in-band WuR system with addressing capabilities. While the DoRa protocol improves the WSNs energy efficiency, it still suffers from an overhearing problem when the WuR system is very often requested. The WuR wastes a noticeable amount of energy when overhearing to wake-up demand intended to other nodes, but it is neither measured nor solved in other works. In this paper, an adaptive duty-cycled DoRa (DC-DoRa) is then proposed to solve the overhearing problem. The primary concept of the work is to enable the WuR functionality before the node is addressed and to disable the WuR after the node sent data. Extensive simulations under OMNeT++ using real input parameters are then performed to show the significant energy-savings through the two protocols and the nearly suppression of overhearing with DC-DoRa. In fact, the mean power consumption is three-order below using the DoRa protocol compared to traditional MAC protocols. While overhearing can represent up to 93% of the WuR energy consumption with the DoRa protocol, it is reduced to only 1% with the DC-DoRa protocol.
文摘The quadratic boost is studied under its real model. The equations, of the continuous conduction mode, descriptive of this model are established. From these equations, the expressions of the voltage gain and the efficiency are extracted. These two quantities are plotted as a function of the duty cycle in order to appreciate them in different operating points of the transistor. The values of the different components have also been extracted for the fabrication of a prototype of the converter. Thanks to a set of experimental measurements at the input as well as at the output of the prototype converter, the voltage gain and the efficiency could also be observed. These were also plotted for different loads to observe converter behavior. The theoretical curves were compared with the experimental curves which allowed to validate the proposed mathematical models on a large range of duty cycles.
文摘To prevent sub-harmonic oscillation and improve the stability and load capacity of the system,a piecewise linear slope compensation circuit is designed. Compared with the traditional design, this circuit provides a compensation signal whose slope varies from different duty cycles at - 40-85℃ ,and reduces the negative effect of slope compensation on the system's load capacity and transient response. A current mode PWM Boost DC-DC converter employing this slope compensation circuit is implemented in a UMC 0.6μm-BCD process. The results indicate that the circuit works well and effectively,and the load capacity is increased by 20%. The chip area of the piecewise linear slope compensation circuit is 0.01mm^2 ,which consumes only 8μA quiescent current,and the efficiency ranges up to 93%.
基金Project (50801056) supported by the National Natural Science Foundation of ChinaProject (2005DKA10400-Z20) supported by the National R&D Infrastructure and Facility Development Program of ChinaProject supported by the Zijin Project of Zhejiang University, China
文摘Micro-arc oxidation (MAO) process was carried out on AZ91D alloy in alkaline borate solution using an alternative square-wave power source with different parameters. The effects of voltage, frequency and duty cycle on the coatings were investigated by orthogonal experiment. It is found that the thickness of coatings increases with the increase of voltage and duty cycle, but decreases with the increase of frequency. The structure and morphology of the coatings also depend on voltage, frequency and duty cycle. The coatings become more porous and crack with increasing voltage and duty cycle. The coating is thin and transparent when the voltage is lower than 120 V. The corrosion resistances of different coatings were evaluated by polarization curves and electrochemical impedance spectroscopy (EIS) in 3.5% NaCl (mass fraction) solution. When the optimized values of voltage, frequency and duty cycle are 140 V, 2 000 Hz and 0.4, respectively, the anodic coating shows the best corrosion resistance.
文摘A novel SPIC(smart power IC) with a simple APFC(active power factor correction) circuit on one chip is proposed.The V _ bus (bus voltage) with high power factor falls from 600V to 400V by using a delay circuit in which a long channel length NMOS is used to substitute a large biasing resistance to save chip area.The lower V _ bus results in a smaller R _ on (on-resistance) of power switcher,which reduces the power loss of the power devices,improves the efficiency of the circuit,and reduces the cost of circuits.An integrated high voltage over voltage protect circuit is also designed in the circuits.Theory and simulations both prove the correctness and availability of the design.
文摘The effects of pulse frequency f and duty cycle r on the deposition rate, composition, morphology, and hardness of pulse electrodeposited RE (rare earth)-Ni-W-P-SiC composite coatings have been studied. The results indicate that pulse current can improve the deposition rate of RE-Ni-W-P-SiC composite coatings; W, P, and SiC contents in the coating decrease with the increase of pulse frequency and reach the lowest value at f = 33Hz, whereas the RE content in the composite coatings increases with the increase of pulse frequency. SiC content decreases with the increase of duty cycle, W content reaches the lowest value, and P content reaches the highest value at r = 0.4; pulse current and RE can lead to smaller size of the crystalline grains; however, the effects of different pulse frequency and duty cycle on the morphologies of RE-Ni-W-P-SiC composite coatings are not obvious. The hardness of RE-Ni-W-P-SiC composite coatings is the highest when the duty cycle is at 0.6 and 0.8 and pulse frequency is at 50Hz. At the same pulse frequency, the hardness of RE-Ni-W-P-SiC composite coatings at r= 0.8 is higher than that at r= 0.6.
文摘Effects of current density, duty cycle and frequency on microstructure and particles content of electrodeposited Co-BN (hexagonal) nano composite coatings were analyzed by SEM, FESEM, EDS, AFM and XRD techniques. The microhardness, tribological behavior and wear mechanism were also investigated. Generally, as the current density and frequency increased, the particles content and microhardness of the coatings increased firstly and then decreased. Moreover, by reducing duty cycle, more particles were incorporated and higher microhardness was obtained. The best tribological behavior was achieved under the conditions duty cycle of 10%, frequency of 50 Hz and current density of 100 mA/cm2.
基金the National Key Research and Development Program of China(No.2016YFB0100603)National Natural Science Foundation of China(No.51877193)。
文摘Modular multilevel resonant converter is an promising candidate for high voltage applications since it has advantageous features,such as high efficiency,high voltage capability and easy fault-tolerant operation.However,the inequality of arm inductance in practice will lead to imbalance between the upper and lower arm voltages,which will induce large ripples in the circulating current and a dc bias on the voltage generated by modular circuits.To compensate for the voltage imbalance,effects of arm duty cycle changes on arm voltages are discussed.An arm voltage balancing control method is proposed:adjust arm duty cycle according to arm voltage deviation in every switching cycle.Simulation and experimental results are presented to validate the theoretical analysis and the proposed control method.