With one month until November 11,all major e-commerce platforms have started their preparations for this great event.The"Double 11"shopping festival was first initiated by Alibaba in 2009and is the world'...With one month until November 11,all major e-commerce platforms have started their preparations for this great event.The"Double 11"shopping festival was first initiated by Alibaba in 2009and is the world's largest online sales gala.This shopping festival is thus named due to the date of November11 and has extended from the original24 hours to several weeks in recent years.The pre-sales stage start from late October.Some new e-commerce companies like TikTok and Pinduoduo have also been involved in the event.展开更多
In the article titled“Correlation between psychological resilience and burnout among female employees in a shopping mall in Xi Xian New Area,China:A cross-sectional survey”by Zhang Q and Liu L(J Integr Nurs 2021;3(3...In the article titled“Correlation between psychological resilience and burnout among female employees in a shopping mall in Xi Xian New Area,China:A cross-sectional survey”by Zhang Q and Liu L(J Integr Nurs 2021;3(3):117-121.doi:10.4103/jin.jin_14_21),[1]the content and results data of this article was questioned by International database(Web of Science)institution.This article was then investigated by the publisher and Journal of Integrative Nursing(JIN).展开更多
With the rise and development of major types of platforms,the competition for resources has become extremely fierce,and the market share of C2C platforms has been seriously threatened by the loss of resources.Therefor...With the rise and development of major types of platforms,the competition for resources has become extremely fierce,and the market share of C2C platforms has been seriously threatened by the loss of resources.Therefore,building and maintaining buyers’satisfaction and loyalty to C2C platforms is critical to the survival and sustainability of C2C platforms in China.However,the current knowledge on how platform satisfaction and loyalty are constructed in the C2C e-commerce environment is incomplete.In this study,seller-based satisfaction and platform-based satisfaction are constructed separately.We further distinguish seller-based transaction satisfaction into economic and social satisfaction and explore their antecedents and consequences.To test our research hypotheses,we conduct a survey and collect data from a real online market(Taobao website).The results show that seller-based transaction satisfaction positively affects platform-based overall satisfaction and loyalty,and that perceived product quality,perceived assurance,and perceived price fairness all have a significant effect on economic satisfaction,whereas perceived relationship quality and perceived empathy significantly influence social satisfaction.These findings help us understand the literature related to customer satisfaction in the context of C2C in China and provide inspiration for online sellers and platforms.展开更多
Background: Supermarkets are a place visited by individuals with different health conditions daily where microbiological contaminants through touch onto fomites such as trolleys and baskets can be passed on to other p...Background: Supermarkets are a place visited by individuals with different health conditions daily where microbiological contaminants through touch onto fomites such as trolleys and baskets can be passed on to other people hence potentially spreading infectious diseases. This study aimed to investigate the presence of Gram-negative and Gram-positive bacteria on handheld shopping trolleys and baskets and their antimicrobial susceptibility status against commonly used antibiotics in Zambia. Methods: A cross-sectional study was conducted. Trolleys and basket handles were swabbed and standard microbiological methods were used to identify the bacteria and disc diffusion to determine their antimicrobial susceptibility status. Data was collected from December 2021 to April 2022. Data was analysed using IBM Statistical Package for Social Sciences (SPSS) Version 22. Results: Twenty-eight percent of the 200 total samples were found to be culture-positive and predominant isolates were Staphylococcus aureus (17.3%), Pseudomonas species (4.5%), Escherichia coli (2%), Corynebacterium species (2%), Staphylococcus species (1.5%) and Enterobacter aerogenes (0.5%). Staphylococcus aureus showed the most resistance to azithromycin (17%) followed by ciprofloxacin (2.8%), nitrofurantoin (2.8%) and chloramphenicol (2.8%). Escherichia coli showed 100% resistance to amoxicillin, cloxacillin and ampicillin, 75% resistance to ciprofloxacin and the least resistance to azithromycin (25%) while it was susceptible to nitrofurantoin. Staphylococcus species, Corynebacterium species, Enterobacter aerogenes and Pseudomonas species showed no resistance to any antibiotics. Conclusion: The study showed the presence of microorganisms with considerable antimicrobial resistance to antibiotics in Zambia on trolley and basket handles indicating the need for more initiatives to address proper hygiene in public environmental sites for better infection prevention and control.展开更多
This comprehensive article examines the phenomenon of consumer addiction,primarily focusing on shopping addiction and its dimensions,including brand addiction.It delves into the underlying causes,manifestations,and co...This comprehensive article examines the phenomenon of consumer addiction,primarily focusing on shopping addiction and its dimensions,including brand addiction.It delves into the underlying causes,manifestations,and consequences of consumer addiction from both consumer and marketer perspectives,shedding light on the ethical and cultural considerations within today's society.Consumer addiction is characterized by recurrent,irresistible purchasing behaviors driven by negative emotions such as anxiety and impulsivity.It is recognized as a behavioral addiction closely intertwined with consumerism.The article emphasizes the imperative for ethical marketing practices to mitigate the exacerbation of addictive behaviors while acknowledging the impact of culture on consumer choices.The article also discusses the crucial role of research in understanding the implications of consumer addiction on the economy,and it suggests that marketers should focus on fostering positive brand addiction rather than exploiting consumerism.It underscores the influence of cultural factors on addictive consumption and calls for responsible marketing practices and governmental regulations.In conclusion,this article highlights the critical significance of consumer addiction in the field of marketing and its multifaceted implications for both consumers and businesses.It underscores the need for ethical marketing strategies,cultural awareness,and responsible brand management to address this complex phenomenon in contemporary society.展开更多
Bottleneck stage and reentrance often exist in real-life manufacturing processes;however,the previous research rarely addresses these two processing conditions in a scheduling problem.In this study,a reentrant hybrid ...Bottleneck stage and reentrance often exist in real-life manufacturing processes;however,the previous research rarely addresses these two processing conditions in a scheduling problem.In this study,a reentrant hybrid flow shop scheduling problem(RHFSP)with a bottleneck stage is considered,and an elite-class teaching-learning-based optimization(ETLBO)algorithm is proposed to minimize maximum completion time.To produce high-quality solutions,teachers are divided into formal ones and substitute ones,and multiple classes are formed.The teacher phase is composed of teacher competition and teacher teaching.The learner phase is replaced with a reinforcement search of the elite class.Adaptive adjustment on teachers and classes is established based on class quality,which is determined by the number of elite solutions in class.Numerous experimental results demonstrate the effectiveness of new strategies,and ETLBO has a significant advantage in solving the considered RHFSP.展开更多
The job shop scheduling problem is a classical combinatorial optimization challenge frequently encountered in manufacturing systems.It involves determining the optimal execution sequences for a set of jobs on various ...The job shop scheduling problem is a classical combinatorial optimization challenge frequently encountered in manufacturing systems.It involves determining the optimal execution sequences for a set of jobs on various machines to maximize production efficiency and meet multiple objectives.The Non-dominated Sorting Genetic Algorithm Ⅲ(NSGA-Ⅲ)is an effective approach for solving the multi-objective job shop scheduling problem.Nevertheless,it has some limitations in solving scheduling problems,including inadequate global search capability,susceptibility to premature convergence,and challenges in balancing convergence and diversity.To enhance its performance,this paper introduces a strengthened dominance relation NSGA-Ⅲ algorithm based on differential evolution(NSGA-Ⅲ-SD).By incorporating constrained differential evolution and simulated binary crossover genetic operators,this algorithm effectively improves NSGA-Ⅲ’s global search capability while mitigating pre-mature convergence issues.Furthermore,it introduces a reinforced dominance relation to address the trade-off between convergence and diversity in NSGA-Ⅲ.Additionally,effective encoding and decoding methods for discrete job shop scheduling are proposed,which can improve the overall performance of the algorithm without complex computation.To validate the algorithm’s effectiveness,NSGA-Ⅲ-SD is extensively compared with other advanced multi-objective optimization algorithms using 20 job shop scheduling test instances.The experimental results demonstrate that NSGA-Ⅲ-SD achieves better solution quality and diversity,proving its effectiveness in solving the multi-objective job shop scheduling problem.展开更多
The distributed flexible job shop scheduling problem(DFJSP)has attracted great attention with the growth of the global manufacturing industry.General DFJSP research only considers machine constraints and ignores worke...The distributed flexible job shop scheduling problem(DFJSP)has attracted great attention with the growth of the global manufacturing industry.General DFJSP research only considers machine constraints and ignores worker constraints.As one critical factor of production,effective utilization of worker resources can increase productivity.Meanwhile,energy consumption is a growing concern due to the increasingly serious environmental issues.Therefore,the distributed flexible job shop scheduling problem with dual resource constraints(DFJSP-DRC)for minimizing makespan and total energy consumption is studied in this paper.To solve the problem,we present a multi-objective mathematical model for DFJSP-DRC and propose a Q-learning-based multi-objective grey wolf optimizer(Q-MOGWO).In Q-MOGWO,high-quality initial solutions are generated by a hybrid initialization strategy,and an improved active decoding strategy is designed to obtain the scheduling schemes.To further enhance the local search capability and expand the solution space,two wolf predation strategies and three critical factory neighborhood structures based on Q-learning are proposed.These strategies and structures enable Q-MOGWO to explore the solution space more efficiently and thus find better Pareto solutions.The effectiveness of Q-MOGWO in addressing DFJSP-DRC is verified through comparison with four algorithms using 45 instances.The results reveal that Q-MOGWO outperforms comparison algorithms in terms of solution quality.展开更多
Flexible job shop scheduling problem(FJSP)is the core decision-making problem of intelligent manufacturing production management.The Harris hawk optimization(HHO)algorithm,as a typical metaheuristic algorithm,has been...Flexible job shop scheduling problem(FJSP)is the core decision-making problem of intelligent manufacturing production management.The Harris hawk optimization(HHO)algorithm,as a typical metaheuristic algorithm,has been widely employed to solve scheduling problems.However,HHO suffers from premature convergence when solving NP-hard problems.Therefore,this paper proposes an improved HHO algorithm(GNHHO)to solve the FJSP.GNHHO introduces an elitism strategy,a chaotic mechanism,a nonlinear escaping energy update strategy,and a Gaussian random walk strategy to prevent premature convergence.A flexible job shop scheduling model is constructed,and the static and dynamic FJSP is investigated to minimize the makespan.This paper chooses a two-segment encoding mode based on the job and the machine of the FJSP.To verify the effectiveness of GNHHO,this study tests it in 23 benchmark functions,10 standard job shop scheduling problems(JSPs),and 5 standard FJSPs.Besides,this study collects data from an agricultural company and uses the GNHHO algorithm to optimize the company’s FJSP.The optimized scheduling scheme demonstrates significant improvements in makespan,with an advancement of 28.16%for static scheduling and 35.63%for dynamic scheduling.Moreover,it achieves an average increase of 21.50%in the on-time order delivery rate.The results demonstrate that the performance of the GNHHO algorithm in solving FJSP is superior to some existing algorithms.展开更多
To solve the sparse reward problem of job-shop scheduling by deep reinforcement learning,a deep reinforcement learning framework considering sparse reward problem is proposed.The job shop scheduling problem is transfo...To solve the sparse reward problem of job-shop scheduling by deep reinforcement learning,a deep reinforcement learning framework considering sparse reward problem is proposed.The job shop scheduling problem is transformed into Markov decision process,and six state features are designed to improve the state feature representation by using two-way scheduling method,including four state features that distinguish the optimal action and two state features that are related to the learning goal.An extended variant of graph isomorphic network GIN++is used to encode disjunction graphs to improve the performance and generalization ability of the model.Through iterative greedy algorithm,random strategy is generated as the initial strategy,and the action with the maximum information gain is selected to expand it to optimize the exploration ability of Actor-Critic algorithm.Through validation of the trained policy model on multiple public test data sets and comparison with other advanced DRL methods and scheduling rules,the proposed method reduces the minimum average gap by 3.49%,5.31%and 4.16%,respectively,compared with the priority rule-based method,and 5.34%compared with the learning-based method.11.97%and 5.02%,effectively improving the accuracy of DRL to solve the approximate solution of JSSP minimum completion time.展开更多
The developments of Internet and e-commerce provide a new market place to businessman to sell their products and allow people to buy products via Internet as well as to create a new shopping media to consumers. The st...The developments of Internet and e-commerce provide a new market place to businessman to sell their products and allow people to buy products via Internet as well as to create a new shopping media to consumers. The study aims to investigate the factors affecting consumers' purchase decision via Internet and how product characteristics affect cyber shopping in Hong Kong. The study has revealed that the security of personal data,delivery time, product brand and price were the major concerns for developing cyber market. For marketing apparel products, brand loyalty becomes very important since consumers' judging confidence on the products can be increased in terms of fitting standards and quality aspects.展开更多
文摘With one month until November 11,all major e-commerce platforms have started their preparations for this great event.The"Double 11"shopping festival was first initiated by Alibaba in 2009and is the world's largest online sales gala.This shopping festival is thus named due to the date of November11 and has extended from the original24 hours to several weeks in recent years.The pre-sales stage start from late October.Some new e-commerce companies like TikTok and Pinduoduo have also been involved in the event.
文摘In the article titled“Correlation between psychological resilience and burnout among female employees in a shopping mall in Xi Xian New Area,China:A cross-sectional survey”by Zhang Q and Liu L(J Integr Nurs 2021;3(3):117-121.doi:10.4103/jin.jin_14_21),[1]the content and results data of this article was questioned by International database(Web of Science)institution.This article was then investigated by the publisher and Journal of Integrative Nursing(JIN).
基金supported by the National Key R&D Program of China(2018YFB1601401).
文摘With the rise and development of major types of platforms,the competition for resources has become extremely fierce,and the market share of C2C platforms has been seriously threatened by the loss of resources.Therefore,building and maintaining buyers’satisfaction and loyalty to C2C platforms is critical to the survival and sustainability of C2C platforms in China.However,the current knowledge on how platform satisfaction and loyalty are constructed in the C2C e-commerce environment is incomplete.In this study,seller-based satisfaction and platform-based satisfaction are constructed separately.We further distinguish seller-based transaction satisfaction into economic and social satisfaction and explore their antecedents and consequences.To test our research hypotheses,we conduct a survey and collect data from a real online market(Taobao website).The results show that seller-based transaction satisfaction positively affects platform-based overall satisfaction and loyalty,and that perceived product quality,perceived assurance,and perceived price fairness all have a significant effect on economic satisfaction,whereas perceived relationship quality and perceived empathy significantly influence social satisfaction.These findings help us understand the literature related to customer satisfaction in the context of C2C in China and provide inspiration for online sellers and platforms.
文摘Background: Supermarkets are a place visited by individuals with different health conditions daily where microbiological contaminants through touch onto fomites such as trolleys and baskets can be passed on to other people hence potentially spreading infectious diseases. This study aimed to investigate the presence of Gram-negative and Gram-positive bacteria on handheld shopping trolleys and baskets and their antimicrobial susceptibility status against commonly used antibiotics in Zambia. Methods: A cross-sectional study was conducted. Trolleys and basket handles were swabbed and standard microbiological methods were used to identify the bacteria and disc diffusion to determine their antimicrobial susceptibility status. Data was collected from December 2021 to April 2022. Data was analysed using IBM Statistical Package for Social Sciences (SPSS) Version 22. Results: Twenty-eight percent of the 200 total samples were found to be culture-positive and predominant isolates were Staphylococcus aureus (17.3%), Pseudomonas species (4.5%), Escherichia coli (2%), Corynebacterium species (2%), Staphylococcus species (1.5%) and Enterobacter aerogenes (0.5%). Staphylococcus aureus showed the most resistance to azithromycin (17%) followed by ciprofloxacin (2.8%), nitrofurantoin (2.8%) and chloramphenicol (2.8%). Escherichia coli showed 100% resistance to amoxicillin, cloxacillin and ampicillin, 75% resistance to ciprofloxacin and the least resistance to azithromycin (25%) while it was susceptible to nitrofurantoin. Staphylococcus species, Corynebacterium species, Enterobacter aerogenes and Pseudomonas species showed no resistance to any antibiotics. Conclusion: The study showed the presence of microorganisms with considerable antimicrobial resistance to antibiotics in Zambia on trolley and basket handles indicating the need for more initiatives to address proper hygiene in public environmental sites for better infection prevention and control.
文摘This comprehensive article examines the phenomenon of consumer addiction,primarily focusing on shopping addiction and its dimensions,including brand addiction.It delves into the underlying causes,manifestations,and consequences of consumer addiction from both consumer and marketer perspectives,shedding light on the ethical and cultural considerations within today's society.Consumer addiction is characterized by recurrent,irresistible purchasing behaviors driven by negative emotions such as anxiety and impulsivity.It is recognized as a behavioral addiction closely intertwined with consumerism.The article emphasizes the imperative for ethical marketing practices to mitigate the exacerbation of addictive behaviors while acknowledging the impact of culture on consumer choices.The article also discusses the crucial role of research in understanding the implications of consumer addiction on the economy,and it suggests that marketers should focus on fostering positive brand addiction rather than exploiting consumerism.It underscores the influence of cultural factors on addictive consumption and calls for responsible marketing practices and governmental regulations.In conclusion,this article highlights the critical significance of consumer addiction in the field of marketing and its multifaceted implications for both consumers and businesses.It underscores the need for ethical marketing strategies,cultural awareness,and responsible brand management to address this complex phenomenon in contemporary society.
基金the National Natural Science Foundation of China(Grant Number 61573264).
文摘Bottleneck stage and reentrance often exist in real-life manufacturing processes;however,the previous research rarely addresses these two processing conditions in a scheduling problem.In this study,a reentrant hybrid flow shop scheduling problem(RHFSP)with a bottleneck stage is considered,and an elite-class teaching-learning-based optimization(ETLBO)algorithm is proposed to minimize maximum completion time.To produce high-quality solutions,teachers are divided into formal ones and substitute ones,and multiple classes are formed.The teacher phase is composed of teacher competition and teacher teaching.The learner phase is replaced with a reinforcement search of the elite class.Adaptive adjustment on teachers and classes is established based on class quality,which is determined by the number of elite solutions in class.Numerous experimental results demonstrate the effectiveness of new strategies,and ETLBO has a significant advantage in solving the considered RHFSP.
基金in part supported by the Key Research and Development Project of Hubei Province(Nos.2020BAB1141,2023BAB094)the Key Project of Science and Technology Research ProgramofHubei Educational Committee(No.D20211402)+1 种基金the Teaching Research Project of Hubei University of Technology(No.XIAO2018001)the Project of Xiangyang Industrial Research Institute of Hubei University of Technology(No.XYYJ2022C04).
文摘The job shop scheduling problem is a classical combinatorial optimization challenge frequently encountered in manufacturing systems.It involves determining the optimal execution sequences for a set of jobs on various machines to maximize production efficiency and meet multiple objectives.The Non-dominated Sorting Genetic Algorithm Ⅲ(NSGA-Ⅲ)is an effective approach for solving the multi-objective job shop scheduling problem.Nevertheless,it has some limitations in solving scheduling problems,including inadequate global search capability,susceptibility to premature convergence,and challenges in balancing convergence and diversity.To enhance its performance,this paper introduces a strengthened dominance relation NSGA-Ⅲ algorithm based on differential evolution(NSGA-Ⅲ-SD).By incorporating constrained differential evolution and simulated binary crossover genetic operators,this algorithm effectively improves NSGA-Ⅲ’s global search capability while mitigating pre-mature convergence issues.Furthermore,it introduces a reinforced dominance relation to address the trade-off between convergence and diversity in NSGA-Ⅲ.Additionally,effective encoding and decoding methods for discrete job shop scheduling are proposed,which can improve the overall performance of the algorithm without complex computation.To validate the algorithm’s effectiveness,NSGA-Ⅲ-SD is extensively compared with other advanced multi-objective optimization algorithms using 20 job shop scheduling test instances.The experimental results demonstrate that NSGA-Ⅲ-SD achieves better solution quality and diversity,proving its effectiveness in solving the multi-objective job shop scheduling problem.
基金supported by the Natural Science Foundation of Anhui Province(Grant Number 2208085MG181)the Science Research Project of Higher Education Institutions in Anhui Province,Philosophy and Social Sciences(Grant Number 2023AH051063)the Open Fund of Key Laboratory of Anhui Higher Education Institutes(Grant Number CS2021-ZD01).
文摘The distributed flexible job shop scheduling problem(DFJSP)has attracted great attention with the growth of the global manufacturing industry.General DFJSP research only considers machine constraints and ignores worker constraints.As one critical factor of production,effective utilization of worker resources can increase productivity.Meanwhile,energy consumption is a growing concern due to the increasingly serious environmental issues.Therefore,the distributed flexible job shop scheduling problem with dual resource constraints(DFJSP-DRC)for minimizing makespan and total energy consumption is studied in this paper.To solve the problem,we present a multi-objective mathematical model for DFJSP-DRC and propose a Q-learning-based multi-objective grey wolf optimizer(Q-MOGWO).In Q-MOGWO,high-quality initial solutions are generated by a hybrid initialization strategy,and an improved active decoding strategy is designed to obtain the scheduling schemes.To further enhance the local search capability and expand the solution space,two wolf predation strategies and three critical factory neighborhood structures based on Q-learning are proposed.These strategies and structures enable Q-MOGWO to explore the solution space more efficiently and thus find better Pareto solutions.The effectiveness of Q-MOGWO in addressing DFJSP-DRC is verified through comparison with four algorithms using 45 instances.The results reveal that Q-MOGWO outperforms comparison algorithms in terms of solution quality.
文摘Flexible job shop scheduling problem(FJSP)is the core decision-making problem of intelligent manufacturing production management.The Harris hawk optimization(HHO)algorithm,as a typical metaheuristic algorithm,has been widely employed to solve scheduling problems.However,HHO suffers from premature convergence when solving NP-hard problems.Therefore,this paper proposes an improved HHO algorithm(GNHHO)to solve the FJSP.GNHHO introduces an elitism strategy,a chaotic mechanism,a nonlinear escaping energy update strategy,and a Gaussian random walk strategy to prevent premature convergence.A flexible job shop scheduling model is constructed,and the static and dynamic FJSP is investigated to minimize the makespan.This paper chooses a two-segment encoding mode based on the job and the machine of the FJSP.To verify the effectiveness of GNHHO,this study tests it in 23 benchmark functions,10 standard job shop scheduling problems(JSPs),and 5 standard FJSPs.Besides,this study collects data from an agricultural company and uses the GNHHO algorithm to optimize the company’s FJSP.The optimized scheduling scheme demonstrates significant improvements in makespan,with an advancement of 28.16%for static scheduling and 35.63%for dynamic scheduling.Moreover,it achieves an average increase of 21.50%in the on-time order delivery rate.The results demonstrate that the performance of the GNHHO algorithm in solving FJSP is superior to some existing algorithms.
基金Shaanxi Provincial Key Research and Development Project(2023YBGY095)and Shaanxi Provincial Qin Chuangyuan"Scientist+Engineer"project(2023KXJ247)Fund support.
文摘To solve the sparse reward problem of job-shop scheduling by deep reinforcement learning,a deep reinforcement learning framework considering sparse reward problem is proposed.The job shop scheduling problem is transformed into Markov decision process,and six state features are designed to improve the state feature representation by using two-way scheduling method,including four state features that distinguish the optimal action and two state features that are related to the learning goal.An extended variant of graph isomorphic network GIN++is used to encode disjunction graphs to improve the performance and generalization ability of the model.Through iterative greedy algorithm,random strategy is generated as the initial strategy,and the action with the maximum information gain is selected to expand it to optimize the exploration ability of Actor-Critic algorithm.Through validation of the trained policy model on multiple public test data sets and comparison with other advanced DRL methods and scheduling rules,the proposed method reduces the minimum average gap by 3.49%,5.31%and 4.16%,respectively,compared with the priority rule-based method,and 5.34%compared with the learning-based method.11.97%and 5.02%,effectively improving the accuracy of DRL to solve the approximate solution of JSSP minimum completion time.
文摘The developments of Internet and e-commerce provide a new market place to businessman to sell their products and allow people to buy products via Internet as well as to create a new shopping media to consumers. The study aims to investigate the factors affecting consumers' purchase decision via Internet and how product characteristics affect cyber shopping in Hong Kong. The study has revealed that the security of personal data,delivery time, product brand and price were the major concerns for developing cyber market. For marketing apparel products, brand loyalty becomes very important since consumers' judging confidence on the products can be increased in terms of fitting standards and quality aspects.