We investigate the problem of H_(∞) state estimation for discrete-time Markov jump neural networks. The transition probabilities of the Markov chain are assumed to be piecewise time-varying, and the persistent dwell-...We investigate the problem of H_(∞) state estimation for discrete-time Markov jump neural networks. The transition probabilities of the Markov chain are assumed to be piecewise time-varying, and the persistent dwell-time switching rule,as a more general switching rule, is adopted to describe this variation characteristic. Afterwards, based on the classical Lyapunov stability theory, a Lyapunov function is established, in which the information about the Markov jump feature of the system mode and the persistent dwell-time switching of the transition probabilities is considered simultaneously.Furthermore, via using the stochastic analysis method and some advanced matrix transformation techniques, some sufficient conditions are obtained such that the estimation error system is mean-square exponentially stable with an H_(∞) performance level, from which the specific form of the estimator can be obtained. Finally, the rationality and effectiveness of the obtained results are verified by a numerical example.展开更多
This paper investigates the error reachable set based stabilization problem for a class of discrete-time switched linear systems with bounded peak disturbances under persistent dwell-time(PDT)constraint.A double-clock...This paper investigates the error reachable set based stabilization problem for a class of discrete-time switched linear systems with bounded peak disturbances under persistent dwell-time(PDT)constraint.A double-clockdependent control scheme is presented that can split the disturbed switched system into a nominal system and an error system,and assign to each system a controller scheduled by a clock.A necessary and sufficient convex stability criterion is presented for the nominal system,and is further extended to the stabilization controller design with a nominal clock.In the presence of bounded peak disturbances,another stabilization controller with an error clock is developed for the error system,with the purpose of‘‘minimizing’’the reachable set of the error system by the ellipsoidal techniques.It is demonstrated that the disturbed system is also globally exponentially stable in the sense of converging to an over approximation of the reachable set of the error system,i.e.,a union of a family of bounding ellipsoids,that can also be regarded as the cross section of a tube containing the trajectories of the disturbed system.Two numerical examples are provided to verify the effectiveness of the developed results.展开更多
This paper proposes a tube-based method for the asynchronous observation problem of discrete-time switched linear systems in the presence of amplitude-bounded disturbances.Sufficient stability conditions of the nomina...This paper proposes a tube-based method for the asynchronous observation problem of discrete-time switched linear systems in the presence of amplitude-bounded disturbances.Sufficient stability conditions of the nominal observer error system under mode-dependent persistent dwell-time(MPDT)switching are first established. Taking the disturbances into account, a novel asynchronous MPDT robust positive invariant(RPI) set and an asynchronous MPDT generalized RPI(GRPI)set are determined for the difference system between the nominal and disturbed observer error systems. Further, the global uniform asymptotical stability of the observer error system is established in the sense of converging to the asynchronous MPDT GRPI set, i.e., the cross section of the tube of the observer error system. Finally, the proposed results are validated on a space robot manipulator example.展开更多
This paper investigates the problem of robust exponential H∞ static output feedback controller design for a class of discrete-time switched linear systems with polytopic-type time-varying parametric uncertainties. Th...This paper investigates the problem of robust exponential H∞ static output feedback controller design for a class of discrete-time switched linear systems with polytopic-type time-varying parametric uncertainties. The objective is to design a switched static output feedback controller guaranteeing the exponential stability of the resulting closed-loop system with a minimized exponential H∞ performance under average dwell-time switching scheme. Based on a parameter-dependent discontinuous switched Lyapunov function combined with Finsler's lemma and Dualization lemma, some novel conditions for exponential H∞ performance analysis are first proposed and in turn the static output feedback controller designs are developed. It is shown that the controller gains can be obtained by solving a set of linear matrix inequalities (LMIs), which are numerically efficient with commercially available software. Finally, a simulation example is provided to illustrate the effectiveness of the proposed approaches.展开更多
This paper deals with the practical exponential stability of two-dimensional(2-D)nonlinear switched positive systems with impulse,disturbance and all modes unstable.Under the mode-dependent interval dwell time switchi...This paper deals with the practical exponential stability of two-dimensional(2-D)nonlinear switched positive systems with impulse,disturbance and all modes unstable.Under the mode-dependent interval dwell time switching,new criteria such that 2-D nonlinear switched positive systems achieve practical exponential stability are derived.Furthermore,the explicit upper bound and convergence rate of the system state are estimated explicitly.Numerical examples indicate the correctness and effectiveness of the obtained results.展开更多
The problem of designing a passive filter for nonlinear switched singularly perturbed systems with parameter uncertainties is explored in this paper.Firstly,the multiple-time-scale phenomenon is settled effectively by...The problem of designing a passive filter for nonlinear switched singularly perturbed systems with parameter uncertainties is explored in this paper.Firstly,the multiple-time-scale phenomenon is settled effectively by introducing a singular perturbation parameter in the plant.Secondly,the interval type-2 fuzzy set theory is employed where parameter uncertainties are expressed in membership functions rather than the system matrices.It is worth noting that interval type-2 fuzzy sets of the devised filter are different from the plant,which makes the design of the filter more flexible.Thirdly,the persistent dwell-time switching rule,as a kind of time-dependent switching rules,is used to manage the switchings among nonlinear singularly perturbed subsystems,and this rule is more general than dwell-time and average dwell-time switching rules.Next,sufficient conditions are provided for guaranteeing that the filtering error system is globally uniformly exponentially stable with a passive performance.Furthermore,on the basis of the linear matrix inequalities,the explicit expression of the designed filter can be obtained.Finally,a tunnel diode electronic circuit is rendered as an example to confirm the correctness and the validity of the developed filter.展开更多
The input-to-state stability (ISS) problem is studied for switched systems with infinite subsystems. By using multiple Lyapunov function method, a sufficient ISS condition is given based on a quantitative relation o...The input-to-state stability (ISS) problem is studied for switched systems with infinite subsystems. By using multiple Lyapunov function method, a sufficient ISS condition is given based on a quantitative relation of the control and the values of the Lyapunov functions of the subsystems before and after the switching instants. In terms of the average dwell-time of the switching laws, some sufficient ISS conditions are obtained for switched nonlinear systems and switched linear systems, respectively.展开更多
In this paper, the H∞ control problem is investigated for a class of discrete-time switched linear systems with modal persistent dwell-time(MPDT) switching. The redundant channels are considered to use in the data tr...In this paper, the H∞ control problem is investigated for a class of discrete-time switched linear systems with modal persistent dwell-time(MPDT) switching. The redundant channels are considered to use in the data transmission to benefit the capability of overcoming the fragility of networks commonly configured by a single channel in the communication networks subject to random packet losses. In light of a new class of Lyapunov functions, the desired observer-based quasi-time-dependent controllers, which have less conservatism than the time-independent ones, are designed such that the resulting closed-loop system is exponentially mean-square stable with a guaranteed H_∞ disturbance attenuation performance. The MPDT can be minimized while ensuring the existence of such a class of observer-based controllers for a given period of persistence. An example of DC-DC boost converter is provided to verify the effectiveness of theoretical findings.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 61873002, 61703004, 61973199, 61573008, and 61973200)。
文摘We investigate the problem of H_(∞) state estimation for discrete-time Markov jump neural networks. The transition probabilities of the Markov chain are assumed to be piecewise time-varying, and the persistent dwell-time switching rule,as a more general switching rule, is adopted to describe this variation characteristic. Afterwards, based on the classical Lyapunov stability theory, a Lyapunov function is established, in which the information about the Markov jump feature of the system mode and the persistent dwell-time switching of the transition probabilities is considered simultaneously.Furthermore, via using the stochastic analysis method and some advanced matrix transformation techniques, some sufficient conditions are obtained such that the estimation error system is mean-square exponentially stable with an H_(∞) performance level, from which the specific form of the estimator can be obtained. Finally, the rationality and effectiveness of the obtained results are verified by a numerical example.
基金supported by the Natural Sciences and Engineering Research Council of Canada(NSERC).
文摘This paper investigates the error reachable set based stabilization problem for a class of discrete-time switched linear systems with bounded peak disturbances under persistent dwell-time(PDT)constraint.A double-clockdependent control scheme is presented that can split the disturbed switched system into a nominal system and an error system,and assign to each system a controller scheduled by a clock.A necessary and sufficient convex stability criterion is presented for the nominal system,and is further extended to the stabilization controller design with a nominal clock.In the presence of bounded peak disturbances,another stabilization controller with an error clock is developed for the error system,with the purpose of‘‘minimizing’’the reachable set of the error system by the ellipsoidal techniques.It is demonstrated that the disturbed system is also globally exponentially stable in the sense of converging to an over approximation of the reachable set of the error system,i.e.,a union of a family of bounding ellipsoids,that can also be regarded as the cross section of a tube containing the trajectories of the disturbed system.Two numerical examples are provided to verify the effectiveness of the developed results.
基金supported in part by the National Defense Basic Scientific Research Program of China(JCKY2018603C015)Cultivation Plan of Major Research Program of Harbin Institute of Technology(ZDXMPY20180101)
文摘This paper proposes a tube-based method for the asynchronous observation problem of discrete-time switched linear systems in the presence of amplitude-bounded disturbances.Sufficient stability conditions of the nominal observer error system under mode-dependent persistent dwell-time(MPDT)switching are first established. Taking the disturbances into account, a novel asynchronous MPDT robust positive invariant(RPI) set and an asynchronous MPDT generalized RPI(GRPI)set are determined for the difference system between the nominal and disturbed observer error systems. Further, the global uniform asymptotical stability of the observer error system is established in the sense of converging to the asynchronous MPDT GRPI set, i.e., the cross section of the tube of the observer error system. Finally, the proposed results are validated on a space robot manipulator example.
基金Supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region of China under Project CityU/112907
文摘This paper investigates the problem of robust exponential H∞ static output feedback controller design for a class of discrete-time switched linear systems with polytopic-type time-varying parametric uncertainties. The objective is to design a switched static output feedback controller guaranteeing the exponential stability of the resulting closed-loop system with a minimized exponential H∞ performance under average dwell-time switching scheme. Based on a parameter-dependent discontinuous switched Lyapunov function combined with Finsler's lemma and Dualization lemma, some novel conditions for exponential H∞ performance analysis are first proposed and in turn the static output feedback controller designs are developed. It is shown that the controller gains can be obtained by solving a set of linear matrix inequalities (LMIs), which are numerically efficient with commercially available software. Finally, a simulation example is provided to illustrate the effectiveness of the proposed approaches.
基金supported by the National Natural Science Foundation of China under Grant No. 61873110Taishan Scholar Foundation of Shandong Province under Grant No. ts20190938
文摘This paper deals with the practical exponential stability of two-dimensional(2-D)nonlinear switched positive systems with impulse,disturbance and all modes unstable.Under the mode-dependent interval dwell time switching,new criteria such that 2-D nonlinear switched positive systems achieve practical exponential stability are derived.Furthermore,the explicit upper bound and convergence rate of the system state are estimated explicitly.Numerical examples indicate the correctness and effectiveness of the obtained results.
基金supported by the National Natural Science Foundation of China under under Grant Nos.61873002,61703004,61973199the Natural Science Foundation of Anhui Province under Grant No.1808085QA18。
文摘The problem of designing a passive filter for nonlinear switched singularly perturbed systems with parameter uncertainties is explored in this paper.Firstly,the multiple-time-scale phenomenon is settled effectively by introducing a singular perturbation parameter in the plant.Secondly,the interval type-2 fuzzy set theory is employed where parameter uncertainties are expressed in membership functions rather than the system matrices.It is worth noting that interval type-2 fuzzy sets of the devised filter are different from the plant,which makes the design of the filter more flexible.Thirdly,the persistent dwell-time switching rule,as a kind of time-dependent switching rules,is used to manage the switchings among nonlinear singularly perturbed subsystems,and this rule is more general than dwell-time and average dwell-time switching rules.Next,sufficient conditions are provided for guaranteeing that the filtering error system is globally uniformly exponentially stable with a passive performance.Furthermore,on the basis of the linear matrix inequalities,the explicit expression of the designed filter can be obtained.Finally,a tunnel diode electronic circuit is rendered as an example to confirm the correctness and the validity of the developed filter.
基金the National Natural Science Foundation of China (Grant No. 60674038)
文摘The input-to-state stability (ISS) problem is studied for switched systems with infinite subsystems. By using multiple Lyapunov function method, a sufficient ISS condition is given based on a quantitative relation of the control and the values of the Lyapunov functions of the subsystems before and after the switching instants. In terms of the average dwell-time of the switching laws, some sufficient ISS conditions are obtained for switched nonlinear systems and switched linear systems, respectively.
基金supported by the National Natural Science Foundation of China(Grant No.61322301)the Natural Science Foundation of Heilongjiang(Grant Nos.F201417&JC2015015)+1 种基金the Fundamental Research Funds for the Central UniversitiesChina(Grant Nos.HIT.BRETIII.201211&HIT.BRETIV.201306)
文摘In this paper, the H∞ control problem is investigated for a class of discrete-time switched linear systems with modal persistent dwell-time(MPDT) switching. The redundant channels are considered to use in the data transmission to benefit the capability of overcoming the fragility of networks commonly configured by a single channel in the communication networks subject to random packet losses. In light of a new class of Lyapunov functions, the desired observer-based quasi-time-dependent controllers, which have less conservatism than the time-independent ones, are designed such that the resulting closed-loop system is exponentially mean-square stable with a guaranteed H_∞ disturbance attenuation performance. The MPDT can be minimized while ensuring the existence of such a class of observer-based controllers for a given period of persistence. An example of DC-DC boost converter is provided to verify the effectiveness of theoretical findings.