A pilot scale(10 m 3/d) anoxic/oxic membrane bioreactor(A/O MBR) was tested for dyeing wastewater treatment of woolen mill without wasting sludge in 125 days operation. Results showed that the effluent quality was exc...A pilot scale(10 m 3/d) anoxic/oxic membrane bioreactor(A/O MBR) was tested for dyeing wastewater treatment of woolen mill without wasting sludge in 125 days operation. Results showed that the effluent quality was excellent, i.e. effluent COD less than 25 mg/L, BOD 5 under 5 mg/L, turbidity lower than 0 65 NTU, and colour less than 30 DT, and met with the reuse water standard of China. The removal rates of COD, BOD 5, colour, and turbidity were 92 4%, 98 4%, 74% and 98 9%, respectively. Constant flux operation mode was carried out in this study, and backwash was effective for reducing membrane fouling and maintaining constant flux. Membrane fouling had heavy impact on energy consumption. More attention should be paid on pipe selection and design for the sidestream MBR system, too.展开更多
Tight ceramic ultrafiltration membranes have been proven to exhibit good rejection performance for reactive dye wastewater at high temperatures because of their high thermal and chemical resistance.However,the applica...Tight ceramic ultrafiltration membranes have been proven to exhibit good rejection performance for reactive dye wastewater at high temperatures because of their high thermal and chemical resistance.However,the application of ceramic membranes for the treatment of cationic dye wastewater is challenging because of their surface charge.In this study,a ceramic membrane is modified by grafting aminosilane(KH-551)to enhance the positive charge of the membrane surface.The rejection performance of the charged modified ceramic membrane toward the methylene blue solution is significantly improved.The modification substance is bonded to the ceramic membrane surface via covalent bonding,which imparts good thermal stability.The modified ceramic membrane exhibits stable separation performance toward the methylene blue solution.Overall,this study provides valuable guidance for the adjustment of the ceramic membrane surface charge for treating industrial cationic dye wastewater.展开更多
Terylene artificial silk printing and dyeing wastewater(TPD wastewater), containing averaged 710 mg/L terephthalic acid(TA) as the main carbon source and the character pollutant, was subjected to expanded granular slu...Terylene artificial silk printing and dyeing wastewater(TPD wastewater), containing averaged 710 mg/L terephthalic acid(TA) as the main carbon source and the character pollutant, was subjected to expanded granular sludge bed(EGSB) process. The stability of the EGSB process was firstly conducted by laboratory experiment. TA ionization was the predominated factor influencing the acid-base balance of the system. High concentration of TA in wastewater resulted in sufficient buffering capacity to neutralize the volatile fatty acids(VFA) generated from substrate degradation and provided strong base for anaerobic system to resist the pH decrease below 6.5. VFA and UFA caused almost no inhibition on the anaerobic process and biogas production except that pH was below 6.35 and VFA was at its maximum value. Along with the granulating of the activated sludge, the efficiency of organic removal and production rate of biogas increased gradually and became more stable. After start-up, the efficiency of COD removal increased to 57%—64%, pH stabilized in a range of 7.99—8.04, and production rate of biogas was relatively high and stable. Sludge granulating, suitable influent of pH and loading were responsible for the EGSB stability. The variation of VFA concentration only resulted in neglectable rebound of pH, and the inhibition from VFA could be ignored in EGSB. The EGSB reactor was stable for TPD wastewater treatment.展开更多
Titanium tetrachloride (TiCl4) treatment was employed to TiO2 coating deposited on fluoride-doped tin oxide (FTO) conducting glass and indium oxide doped tin oxide (ITO) conducting glass, respectively. The nano-crysta...Titanium tetrachloride (TiCl4) treatment was employed to TiO2 coating deposited on fluoride-doped tin oxide (FTO) conducting glass and indium oxide doped tin oxide (ITO) conducting glass, respectively. The nano-crystalline TiO2 coating was deposited using a composite powder composed of polyethylene glycol (PEG) and 25 nm TiO2 particles by vacuum cold spraying (VCS) process. A commercial N-719 dye was used to adsorb on the surface of TiO2 coating to prepare TiO2 electrode, which was applied to assemble dye-sensitized solar cell (DSC). The cell performance was measured under simulated solar light at an intensity of 100 mW·cm-2. Results show that with an FTO substrate the DSC composed of a VCS TiO2 electrode untreated by TiCl4 gives a short-circuit current density of 13.1 mA·cm-2 and an open circuit voltage of 0.60 V corresponding to an overall conversion efficiency of 4.4%. It is found that after TiCl4 treatment to the VCS TiO2 electrode with an FTO substrate, the short circuit current density of the cell increases by 31%, the open-circuit voltage increases by 60 mV and a higher conversion yield of 6.5% was obtained. However, when an ITO substrate is used to deposit TiO2 coating by VCS, after TiCl4 treatment, the conversion efficiency of the assembled cell reduces slightly due to corrosion of the conducting layer on the ITO glass by TiCl4.展开更多
Simultaneous removals of dye and nitrate by photo dependent denitrifying sludge(PDDS) have been demonstrated in a continuous flow bench scale reactor. The best C/N for the degradation of azo dyes by PDDS was 1.5. T...Simultaneous removals of dye and nitrate by photo dependent denitrifying sludge(PDDS) have been demonstrated in a continuous flow bench scale reactor. The best C/N for the degradation of azo dyes by PDDS was 1.5. The specific removal rate of azo dye AB92 decreased with a decrease in hydraulic retention time and increased with a decrease in solids retention time. The degradation rate of TOC decreased with a decrease in hydraulic retention time. AB92, which has nitro and hydroxyl substitutions in non para positions, was uniquely degraded. During continuous flow treatment experiments using PDDS, complete degradation of azo dyes AB92 and AO20 at influent concentrations of 40 mg/L and 30 mg/L, respectively, was achieved with an HRT of 16.展开更多
<div style="text-align:justify;"> Ozone plasma treatment is accessible to be applied on shading adjustment and colour fading because of the capacity of ozone production. It is a green process that trea...<div style="text-align:justify;"> Ozone plasma treatment is accessible to be applied on shading adjustment and colour fading because of the capacity of ozone production. It is a green process that treats dyed cotton fabric under dry condition so as to avoid chemical pollutants. This study means to explore colour reflectance of decolourized sulfur dyed cotton texture using ozone plasma treatment. Sulfur dyed cotton textures with various colour depths (0.5%, 1.5%, 2.5%) were set up to be treated different plasma parameters, including ozone air concentrations (10%, 30%, 50%, 70%), water contents in terms of weight percentage (35%, 45%) of fabric and ozone air plasma treatment periods (10 mins, 20 mins, 30 mins). The colour fading result is assessed by the colour reflectance in percentage (R%) utilizing spectrophotometer under CIE standard illuminant D65. The valid colour fading based on high percentage of reflectance was demonstrated from plasma treatment under higher ozone air concentration (50% and 70% ozone in air) and longer time length of plasma treatment (20 mins and 30 mins). The level of water content contained in the cotton fabrics is appeared to have noteworthy relationship with the degree of decolourization. </div>展开更多
The oxidation ditch process is economic and efficient for wastewater treatment, but its application is limited in case where land is costly due to its large land area required. An innovative integrated oxidation ditch...The oxidation ditch process is economic and efficient for wastewater treatment, but its application is limited in case where land is costly due to its large land area required. An innovative integrated oxidation ditch with vertical circle(IODVC) system was developed to treat domestic and industrial wastewater aiming to save land area. The new system consists of a single channel divided into two ditches(the top one and the bottom one by a plate), a brush, and an innovative integral clarifier. Different from the horizontal circle of the conventional oxidation ditch, the flow of IODVC system recycles from the top zone to the bottom zone in the vertical circle as the brush is running, and then the IODVC saved land area required by about 50% compared with a conventional oxidation ditch with an intrachannel clarifier. The innovative integral clarifier is effective for separation of liquid and solids, and is preferably positioned at the opposite end of the brush in the ditch. It does not affect the hydrodynamic characteristics of the mixed liquor in the ditch, and the sludge can automatically return to the down ditch without any pump. In this study, experiments of domestic and dye wastewater treatment were carried out in bench scale and in full scale, respectively. Results clearly showed that the IODVC efficiently removed pollutants in the wastewaters, i.e., the average of COD removals for domestic and dye wastewater treatment were 95% and 90%, respectively, and that the IODVC process may provide a cost effective way for full scale dye wastewater treatment.展开更多
In order to improve the efficient decolorization of dye-containing water by biosorbent and understand the biosorption mechanism, the self-immobilization mycelial pellets were prepared using a marine-derived fungus Asp...In order to improve the efficient decolorization of dye-containing water by biosorbent and understand the biosorption mechanism, the self-immobilization mycelial pellets were prepared using a marine-derived fungus Aspergillus niger ZJUBE-1, and an azo dye, Congo red was chosen as a model dye to investigate batch decolorization efficiency by pellets. The pellets as biosorbent showed strong salt and acid tolerance in biosorption process. The results for dye adsorption showed that the biosorption process fitted well with models of pseudo-second-order kinetic and Langmuir isotherm, with a maximum adsorption capacity of 263.2 mg·g^(-1) mycelium. During 6 batches of continuous decolorization operation, the mycelial pellets could possess efficient decolorization abilities(>98.5%).The appearance of new peak in the UV–Vis spectral result indicated that the decolorization process may also contain biodegradation. The mechanism studies showed that efficient biosorption ability of pellets only relies on the active zone on the surface of the pellet, which can be enhanced by nutrition supplement or be shifted outward by a reculture process.展开更多
In order to develop a catalyst with high activity for catalytic wet oxidation (CWO) process at room temperature and atmospheric pressure, Fe2O3-CeO2-TiO2/γ-Al2O3 catalyst was prepared by consecutive impregnation me...In order to develop a catalyst with high activity for catalytic wet oxidation (CWO) process at room temperature and atmospheric pressure, Fe2O3-CeO2-TiO2/γ-Al2O3 catalyst was prepared by consecutive impregnation method and the prepared parameters were optimized. The structure of the catalyst was characterized by BET, XRF, SEM and XPS technologies, and the actual wastewater was used to investigate the catalytic activity of Fe2O3-CeO2-TiO2/γ-Al2O3 in CWO process. The experimental results showed that the prepared catalyst exhibited good catalytic activity when the doping amount of Ti was 1.0 wt% (the weight ratio of Ti to carriers), and the middle product, Fe2O3-CeO2-TiO2/γ-Al2O3, was calcined in 450℃ for 2 h. The CWO experiment for treating actual dye wastewater indicated that the COD, color and TOC of actual wastewater were decreased by 62.23%, 50.12% and 41.26% in 3 h, respectively, and the ratio of BOD5/COD was increased from 0.19 to 0.30.展开更多
In this study an effort has been made to use plant polyphenol oxidases; potato (Solanum tuberosum) and brinjal (Solanum melongena), for the treatment of various important dyes used in textile and other industries....In this study an effort has been made to use plant polyphenol oxidases; potato (Solanum tuberosum) and brinjal (Solanum melongena), for the treatment of various important dyes used in textile and other industries. The ammonium sulphate fractionated enzyme preparations were used to treat a number of dyes under various experimental conditions. Majority of the treated dyes were maximally decolorized at pH 3.0. Some of the dyes were quickly decolorized whereas others were marginally decolorized. The initial first hour was sufficient for the maximum decolorization of dyes. The rate of decolorization was quite slow on long treatment of dyes. Enhancement in the dye decolorization was noticed on increasing the concentration of enzymes. The complex mixtures of dyes were treated with both preparations of polyphenol oxidases in the buffers of varying pH values. Potato polyphenol oxidase was significantly more effective in decolorizing the dyes to higher extent as compared to the enzyme obtained from brinjal polyphenol oxidase. Decolorization of dyes and their mixtures, followed by the formation of an insoluble precipitate, which could be easily removed simply by centrifugation.展开更多
Porous g-C3N4samples were obtained by simply calcining bulk g-C3N4in static air in a muffle oven.The photocatalytic performance of these samples was evaluated through the removal of aqueous organic dyes(methylene blu...Porous g-C3N4samples were obtained by simply calcining bulk g-C3N4in static air in a muffle oven.The photocatalytic performance of these samples was evaluated through the removal of aqueous organic dyes(methylene blue and methyl orange)and tetracycline hydrochloride under visible-light irradiation(λ〉420 nm).Compared to bulk g-C3N4,porous g-C3N4exhibited much better capability for removing these contaminants,especially under visible-light irradiation,due to the enlarged specific surface area and more efficient separation of photogenerated charge carries.In particular,porous g-C3N4obtained by calcining bulk g-C3N4in air at 525℃ showed the highest visible-light-driven catalytic activity among these samples.Superoxide radical anions(·O2^-)were found to be the primary active species responsible for photodegradation.展开更多
Dispersol dyes were photodegradated by solar-illuniinated catalysts. The effect of catalysttype, catalyst amount, PH, irradiation time, reaction medium and DO on decolorization efficiencywere discussed in detail.Dispe...Dispersol dyes were photodegradated by solar-illuniinated catalysts. The effect of catalysttype, catalyst amount, PH, irradiation time, reaction medium and DO on decolorization efficiencywere discussed in detail.Dispersol dyes decolorized rapidly and decomposed to inorganic carbon finally. Thephotodegradation intermediates were analyzed with UV. IR and GC/MS, which showed that benzenering wns opened and alkylates were produced.Treatment of dispersol yellow-brown wastewater by solar-illuminated catalyst obtainedsatisfactory results: decolorized 86.7% and COD decreased 48.2%, which means that photocatalytictreatment of color wastewater is practical.展开更多
As the characteristic pollutant, terephthalic acid(TA)was in charge of 40%—78% of the total COD of terylene artificial silk printing and dyeing wastewater(TPW-water). The studies on biodegradability of TA were conduc...As the characteristic pollutant, terephthalic acid(TA)was in charge of 40%—78% of the total COD of terylene artificial silk printing and dyeing wastewater(TPW-water). The studies on biodegradability of TA were conducted in a serial of activated sludge reactors with TPW-water. TA appeared to be readily biodegradable with removal efficiency over 96.5% under aerobic conditions, hardly biodegradable with removal efficiency below 10% under anoxic conditions and slowly biodegradable with a turnover between 31.4% and 56.0% under anaerobic conditions. TA also accounted for the majority of BOD in TPW-water. The process combined by anoxic, anaerobic and aerobic activated sludge reactor was suitable for TA degradation and TPW-water treatment. Further, the aerobic process was essentially much more effective than the anaerobic or anoxic one to degrade TA in TPW-water.展开更多
In this paper, the reactive yellow 14 dye solution was removed from aqueous solution in the presence of commercial ZnO (mean crystallite size is 44.116 nm) under the UV A light. The decolourization of dye process was ...In this paper, the reactive yellow 14 dye solution was removed from aqueous solution in the presence of commercial ZnO (mean crystallite size is 44.116 nm) under the UV A light. The decolourization of dye process was obeyed to pseudo-first orderkinetics. The optimum conditions of decolourization for this dye such as: initial dye concentration 50 mg/L, best dose of ZnO 350 mg/100mL and initial pH of aqueous solution of dye 6.75 were studied. Activation energies for dye were found to be 27.244 kJmol<sup>-1</sup>. The photoreaction process was observed to be endothermic reaction and less randomness.展开更多
The photocatalytic degradation of reactive dyes with solar-irradiated TiO2 was investigated in these experiments which showed that: (1)the decolourization efficiency are determined by pH value, catalyst amount and lig...The photocatalytic degradation of reactive dyes with solar-irradiated TiO2 was investigated in these experiments which showed that: (1)the decolourization efficiency are determined by pH value, catalyst amount and light intensity; (2) the reactive dyes decolourized rapidly (cleavageld be biologically degradated more easily, the toxicity decreased considerably after photodegradation.The results demonstrated that the photocatalytic process would become an efficient and safe method for colour wastewater treatment and would be very useful for explaining the reaction mechanism and decolourising structure-reactivity relationship. of the azo linkage), but the intermediates needed more time to transform to further degradation products, and finally to produce CO2; (3) the main products were identified to be alkanes and alkyl amines which cou展开更多
Heterogeneous Fenton/photo Fenton type processes using a Fe-exchanged zeolite of Y-type have been applied for the degradation of a model textile synthetic water based on Black B azodye. Research work has been directed...Heterogeneous Fenton/photo Fenton type processes using a Fe-exchanged zeolite of Y-type have been applied for the degradation of a model textile synthetic water based on Black B azodye. Research work has been directed to compare process efficiency and to establish their advantages over corresponding homogenous Fenton type processes. By optimizing the amount of reactants and process conditions, a complete decolorization of the effluent and a reduction greater than 80 per cent in the total organic carbon content is achieved. The influence of solar radiation on the heterogeneous process has been also studied. Homogeneous and heterogeneous Fenton processes yielded similar decolorization and mineralization, but the concentration of Fe ions in the bulk after the treatment was not significant in the latter case. Moreover, the catalyst support can be reused in successive cycles without significant loss of effectiveness. The use of solar radiation as a source of energy for operating the process accelerates the decomposition of azodye, making the process economical and environmentally sustainable.展开更多
Nowadays, wastewater from dyeing industries became a challenging issue in the world. Researchers have reported several techniques to treat those effluents based on their projects. Adsorption is the most common method ...Nowadays, wastewater from dyeing industries became a challenging issue in the world. Researchers have reported several techniques to treat those effluents based on their projects. Adsorption is the most common method because of cheap, simple and effective method. In this work, activated carbon was used for dye adsorption purpose. This adsorbent has high surface area and high porosity to remove dye. This review highlighted some important results of the last few years regarding the use of activated carbon in wastewater treatment. Research findings supported that adsorption process is spontaneous in nature. Adsorption data confirmed Langmuir model, indicating the chemisorption occurred.展开更多
文摘A pilot scale(10 m 3/d) anoxic/oxic membrane bioreactor(A/O MBR) was tested for dyeing wastewater treatment of woolen mill without wasting sludge in 125 days operation. Results showed that the effluent quality was excellent, i.e. effluent COD less than 25 mg/L, BOD 5 under 5 mg/L, turbidity lower than 0 65 NTU, and colour less than 30 DT, and met with the reuse water standard of China. The removal rates of COD, BOD 5, colour, and turbidity were 92 4%, 98 4%, 74% and 98 9%, respectively. Constant flux operation mode was carried out in this study, and backwash was effective for reducing membrane fouling and maintaining constant flux. Membrane fouling had heavy impact on energy consumption. More attention should be paid on pipe selection and design for the sidestream MBR system, too.
基金supported by the Project for Natural Science Research of Jiangsu Higher Education Institutions(20KJA530001)the National Natural Science Foundation of China(22078147,21808107)the Natural Science Foundation of Jiangsu Province(BK20180163)and the Research Project of National Synthetic Biotechnology Innovation Centre(TSBICIP-KJGG-002-16).
文摘Tight ceramic ultrafiltration membranes have been proven to exhibit good rejection performance for reactive dye wastewater at high temperatures because of their high thermal and chemical resistance.However,the application of ceramic membranes for the treatment of cationic dye wastewater is challenging because of their surface charge.In this study,a ceramic membrane is modified by grafting aminosilane(KH-551)to enhance the positive charge of the membrane surface.The rejection performance of the charged modified ceramic membrane toward the methylene blue solution is significantly improved.The modification substance is bonded to the ceramic membrane surface via covalent bonding,which imparts good thermal stability.The modified ceramic membrane exhibits stable separation performance toward the methylene blue solution.Overall,this study provides valuable guidance for the adjustment of the ceramic membrane surface charge for treating industrial cationic dye wastewater.
文摘Terylene artificial silk printing and dyeing wastewater(TPD wastewater), containing averaged 710 mg/L terephthalic acid(TA) as the main carbon source and the character pollutant, was subjected to expanded granular sludge bed(EGSB) process. The stability of the EGSB process was firstly conducted by laboratory experiment. TA ionization was the predominated factor influencing the acid-base balance of the system. High concentration of TA in wastewater resulted in sufficient buffering capacity to neutralize the volatile fatty acids(VFA) generated from substrate degradation and provided strong base for anaerobic system to resist the pH decrease below 6.5. VFA and UFA caused almost no inhibition on the anaerobic process and biogas production except that pH was below 6.35 and VFA was at its maximum value. Along with the granulating of the activated sludge, the efficiency of organic removal and production rate of biogas increased gradually and became more stable. After start-up, the efficiency of COD removal increased to 57%—64%, pH stabilized in a range of 7.99—8.04, and production rate of biogas was relatively high and stable. Sludge granulating, suitable influent of pH and loading were responsible for the EGSB stability. The variation of VFA concentration only resulted in neglectable rebound of pH, and the inhibition from VFA could be ignored in EGSB. The EGSB reactor was stable for TPD wastewater treatment.
文摘Titanium tetrachloride (TiCl4) treatment was employed to TiO2 coating deposited on fluoride-doped tin oxide (FTO) conducting glass and indium oxide doped tin oxide (ITO) conducting glass, respectively. The nano-crystalline TiO2 coating was deposited using a composite powder composed of polyethylene glycol (PEG) and 25 nm TiO2 particles by vacuum cold spraying (VCS) process. A commercial N-719 dye was used to adsorb on the surface of TiO2 coating to prepare TiO2 electrode, which was applied to assemble dye-sensitized solar cell (DSC). The cell performance was measured under simulated solar light at an intensity of 100 mW·cm-2. Results show that with an FTO substrate the DSC composed of a VCS TiO2 electrode untreated by TiCl4 gives a short-circuit current density of 13.1 mA·cm-2 and an open circuit voltage of 0.60 V corresponding to an overall conversion efficiency of 4.4%. It is found that after TiCl4 treatment to the VCS TiO2 electrode with an FTO substrate, the short circuit current density of the cell increases by 31%, the open-circuit voltage increases by 60 mV and a higher conversion yield of 6.5% was obtained. However, when an ITO substrate is used to deposit TiO2 coating by VCS, after TiCl4 treatment, the conversion efficiency of the assembled cell reduces slightly due to corrosion of the conducting layer on the ITO glass by TiCl4.
文摘Simultaneous removals of dye and nitrate by photo dependent denitrifying sludge(PDDS) have been demonstrated in a continuous flow bench scale reactor. The best C/N for the degradation of azo dyes by PDDS was 1.5. The specific removal rate of azo dye AB92 decreased with a decrease in hydraulic retention time and increased with a decrease in solids retention time. The degradation rate of TOC decreased with a decrease in hydraulic retention time. AB92, which has nitro and hydroxyl substitutions in non para positions, was uniquely degraded. During continuous flow treatment experiments using PDDS, complete degradation of azo dyes AB92 and AO20 at influent concentrations of 40 mg/L and 30 mg/L, respectively, was achieved with an HRT of 16.
文摘<div style="text-align:justify;"> Ozone plasma treatment is accessible to be applied on shading adjustment and colour fading because of the capacity of ozone production. It is a green process that treats dyed cotton fabric under dry condition so as to avoid chemical pollutants. This study means to explore colour reflectance of decolourized sulfur dyed cotton texture using ozone plasma treatment. Sulfur dyed cotton textures with various colour depths (0.5%, 1.5%, 2.5%) were set up to be treated different plasma parameters, including ozone air concentrations (10%, 30%, 50%, 70%), water contents in terms of weight percentage (35%, 45%) of fabric and ozone air plasma treatment periods (10 mins, 20 mins, 30 mins). The colour fading result is assessed by the colour reflectance in percentage (R%) utilizing spectrophotometer under CIE standard illuminant D65. The valid colour fading based on high percentage of reflectance was demonstrated from plasma treatment under higher ozone air concentration (50% and 70% ozone in air) and longer time length of plasma treatment (20 mins and 30 mins). The level of water content contained in the cotton fabrics is appeared to have noteworthy relationship with the degree of decolourization. </div>
文摘The oxidation ditch process is economic and efficient for wastewater treatment, but its application is limited in case where land is costly due to its large land area required. An innovative integrated oxidation ditch with vertical circle(IODVC) system was developed to treat domestic and industrial wastewater aiming to save land area. The new system consists of a single channel divided into two ditches(the top one and the bottom one by a plate), a brush, and an innovative integral clarifier. Different from the horizontal circle of the conventional oxidation ditch, the flow of IODVC system recycles from the top zone to the bottom zone in the vertical circle as the brush is running, and then the IODVC saved land area required by about 50% compared with a conventional oxidation ditch with an intrachannel clarifier. The innovative integral clarifier is effective for separation of liquid and solids, and is preferably positioned at the opposite end of the brush in the ditch. It does not affect the hydrodynamic characteristics of the mixed liquor in the ditch, and the sludge can automatically return to the down ditch without any pump. In this study, experiments of domestic and dye wastewater treatment were carried out in bench scale and in full scale, respectively. Results clearly showed that the IODVC efficiently removed pollutants in the wastewaters, i.e., the average of COD removals for domestic and dye wastewater treatment were 95% and 90%, respectively, and that the IODVC process may provide a cost effective way for full scale dye wastewater treatment.
基金Supported by the National Natural Science Foundation of China(No.21376214)
文摘In order to improve the efficient decolorization of dye-containing water by biosorbent and understand the biosorption mechanism, the self-immobilization mycelial pellets were prepared using a marine-derived fungus Aspergillus niger ZJUBE-1, and an azo dye, Congo red was chosen as a model dye to investigate batch decolorization efficiency by pellets. The pellets as biosorbent showed strong salt and acid tolerance in biosorption process. The results for dye adsorption showed that the biosorption process fitted well with models of pseudo-second-order kinetic and Langmuir isotherm, with a maximum adsorption capacity of 263.2 mg·g^(-1) mycelium. During 6 batches of continuous decolorization operation, the mycelial pellets could possess efficient decolorization abilities(>98.5%).The appearance of new peak in the UV–Vis spectral result indicated that the decolorization process may also contain biodegradation. The mechanism studies showed that efficient biosorption ability of pellets only relies on the active zone on the surface of the pellet, which can be enhanced by nutrition supplement or be shifted outward by a reculture process.
基金The National Basic Research Program (973) of China (No. 2004CB418505) the Foundation for Excellent Youth of HeilongjiangProvince
文摘In order to develop a catalyst with high activity for catalytic wet oxidation (CWO) process at room temperature and atmospheric pressure, Fe2O3-CeO2-TiO2/γ-Al2O3 catalyst was prepared by consecutive impregnation method and the prepared parameters were optimized. The structure of the catalyst was characterized by BET, XRF, SEM and XPS technologies, and the actual wastewater was used to investigate the catalytic activity of Fe2O3-CeO2-TiO2/γ-Al2O3 in CWO process. The experimental results showed that the prepared catalyst exhibited good catalytic activity when the doping amount of Ti was 1.0 wt% (the weight ratio of Ti to carriers), and the middle product, Fe2O3-CeO2-TiO2/γ-Al2O3, was calcined in 450℃ for 2 h. The CWO experiment for treating actual dye wastewater indicated that the COD, color and TOC of actual wastewater were decreased by 62.23%, 50.12% and 41.26% in 3 h, respectively, and the ratio of BOD5/COD was increased from 0.19 to 0.30.
文摘In this study an effort has been made to use plant polyphenol oxidases; potato (Solanum tuberosum) and brinjal (Solanum melongena), for the treatment of various important dyes used in textile and other industries. The ammonium sulphate fractionated enzyme preparations were used to treat a number of dyes under various experimental conditions. Majority of the treated dyes were maximally decolorized at pH 3.0. Some of the dyes were quickly decolorized whereas others were marginally decolorized. The initial first hour was sufficient for the maximum decolorization of dyes. The rate of decolorization was quite slow on long treatment of dyes. Enhancement in the dye decolorization was noticed on increasing the concentration of enzymes. The complex mixtures of dyes were treated with both preparations of polyphenol oxidases in the buffers of varying pH values. Potato polyphenol oxidase was significantly more effective in decolorizing the dyes to higher extent as compared to the enzyme obtained from brinjal polyphenol oxidase. Decolorization of dyes and their mixtures, followed by the formation of an insoluble precipitate, which could be easily removed simply by centrifugation.
基金Supported by the National Natural Science Foundation of China(Grant No.21477022)
文摘Porous g-C3N4samples were obtained by simply calcining bulk g-C3N4in static air in a muffle oven.The photocatalytic performance of these samples was evaluated through the removal of aqueous organic dyes(methylene blue and methyl orange)and tetracycline hydrochloride under visible-light irradiation(λ〉420 nm).Compared to bulk g-C3N4,porous g-C3N4exhibited much better capability for removing these contaminants,especially under visible-light irradiation,due to the enlarged specific surface area and more efficient separation of photogenerated charge carries.In particular,porous g-C3N4obtained by calcining bulk g-C3N4in air at 525℃ showed the highest visible-light-driven catalytic activity among these samples.Superoxide radical anions(·O2^-)were found to be the primary active species responsible for photodegradation.
文摘Dispersol dyes were photodegradated by solar-illuniinated catalysts. The effect of catalysttype, catalyst amount, PH, irradiation time, reaction medium and DO on decolorization efficiencywere discussed in detail.Dispersol dyes decolorized rapidly and decomposed to inorganic carbon finally. Thephotodegradation intermediates were analyzed with UV. IR and GC/MS, which showed that benzenering wns opened and alkylates were produced.Treatment of dispersol yellow-brown wastewater by solar-illuminated catalyst obtainedsatisfactory results: decolorized 86.7% and COD decreased 48.2%, which means that photocatalytictreatment of color wastewater is practical.
文摘As the characteristic pollutant, terephthalic acid(TA)was in charge of 40%—78% of the total COD of terylene artificial silk printing and dyeing wastewater(TPW-water). The studies on biodegradability of TA were conducted in a serial of activated sludge reactors with TPW-water. TA appeared to be readily biodegradable with removal efficiency over 96.5% under aerobic conditions, hardly biodegradable with removal efficiency below 10% under anoxic conditions and slowly biodegradable with a turnover between 31.4% and 56.0% under anaerobic conditions. TA also accounted for the majority of BOD in TPW-water. The process combined by anoxic, anaerobic and aerobic activated sludge reactor was suitable for TA degradation and TPW-water treatment. Further, the aerobic process was essentially much more effective than the anaerobic or anoxic one to degrade TA in TPW-water.
文摘In this paper, the reactive yellow 14 dye solution was removed from aqueous solution in the presence of commercial ZnO (mean crystallite size is 44.116 nm) under the UV A light. The decolourization of dye process was obeyed to pseudo-first orderkinetics. The optimum conditions of decolourization for this dye such as: initial dye concentration 50 mg/L, best dose of ZnO 350 mg/100mL and initial pH of aqueous solution of dye 6.75 were studied. Activation energies for dye were found to be 27.244 kJmol<sup>-1</sup>. The photoreaction process was observed to be endothermic reaction and less randomness.
文摘The photocatalytic degradation of reactive dyes with solar-irradiated TiO2 was investigated in these experiments which showed that: (1)the decolourization efficiency are determined by pH value, catalyst amount and light intensity; (2) the reactive dyes decolourized rapidly (cleavageld be biologically degradated more easily, the toxicity decreased considerably after photodegradation.The results demonstrated that the photocatalytic process would become an efficient and safe method for colour wastewater treatment and would be very useful for explaining the reaction mechanism and decolourising structure-reactivity relationship. of the azo linkage), but the intermediates needed more time to transform to further degradation products, and finally to produce CO2; (3) the main products were identified to be alkanes and alkyl amines which cou
文摘Heterogeneous Fenton/photo Fenton type processes using a Fe-exchanged zeolite of Y-type have been applied for the degradation of a model textile synthetic water based on Black B azodye. Research work has been directed to compare process efficiency and to establish their advantages over corresponding homogenous Fenton type processes. By optimizing the amount of reactants and process conditions, a complete decolorization of the effluent and a reduction greater than 80 per cent in the total organic carbon content is achieved. The influence of solar radiation on the heterogeneous process has been also studied. Homogeneous and heterogeneous Fenton processes yielded similar decolorization and mineralization, but the concentration of Fe ions in the bulk after the treatment was not significant in the latter case. Moreover, the catalyst support can be reused in successive cycles without significant loss of effectiveness. The use of solar radiation as a source of energy for operating the process accelerates the decomposition of azodye, making the process economical and environmentally sustainable.
文摘Nowadays, wastewater from dyeing industries became a challenging issue in the world. Researchers have reported several techniques to treat those effluents based on their projects. Adsorption is the most common method because of cheap, simple and effective method. In this work, activated carbon was used for dye adsorption purpose. This adsorbent has high surface area and high porosity to remove dye. This review highlighted some important results of the last few years regarding the use of activated carbon in wastewater treatment. Research findings supported that adsorption process is spontaneous in nature. Adsorption data confirmed Langmuir model, indicating the chemisorption occurred.