This work demonstrates the realization of a lasing in scattering media,which contains dispersive solution of Zn O nanoparticles(NPs) and laser dye 4-dicyanomethylene-2-methyle-6-(p-dimethylaminostyryl)-4H-pyran(...This work demonstrates the realization of a lasing in scattering media,which contains dispersive solution of Zn O nanoparticles(NPs) and laser dye 4-dicyanomethylene-2-methyle-6-(p-dimethylaminostyryl)-4H-pyran(DCM) in negative liquid crystals(LCs) that was injected into a cell.The lasing intensity of the dye-doped negative LC laser can be tuned from low to high if the NPs concentration is increased.The tunability of the laser is attributable to the clusters-sensitive feature in effective refractive index of the negative LCs.Such a tunable negative liquid crystal laser can be used in the fabrication of new optical sources,optical communication,and liquid crystal laser displays.展开更多
Two ways of employing cholesteric liquid crystals in tunable dye lasers are considered: the cholesterics as distributed feedback medium and the cholesterics as resonator mirrors. In the dye doped distributed feedback ...Two ways of employing cholesteric liquid crystals in tunable dye lasers are considered: the cholesterics as distributed feedback medium and the cholesterics as resonator mirrors. In the dye doped distributed feedback cholesteric liquid crystal lasers the frequency tuning is achieved exploiting light induced effects or using a specially designed cell assembling a chiral dopant concentration gradient in combination with suitable distribution of different dyes. Another approach represents the lasing in a multilayer system consisting of a dye doped isotropic solvent sandwiched between two CLC layers.展开更多
This study investigated direct fluorescence generation from a nematic liquid crystal(NLC)NJU-LDn-4 under femtosecond laser excitation.The absorption,transmittance,excitation,and emission spectra of the NLC were assess...This study investigated direct fluorescence generation from a nematic liquid crystal(NLC)NJU-LDn-4 under femtosecond laser excitation.The absorption,transmittance,excitation,and emission spectra of the NLC were assessed.The relationship between the femtosecond pump power and fluorescence intensity was analyzed,revealing a quadratic increase and indicating that two-photon absorption(2PA)is the primary fluorescence mechanism.The LC microstructure was designed using photoalignment technology,allowing the generated fluorescence to reflect the corresponding structure.This research can establish a foundation for tunable LC microstructured fluorescence,with potential applications in fluorescence microscopy and optoelectronics.展开更多
In this work, negative dielectric nematic liquid crystal SLC 12V620-400, chiral dopant S811, and laser dye DCM are used to prepare dye-doped chiral nematic liquid crystal laser sample. In order to investigate temperat...In this work, negative dielectric nematic liquid crystal SLC 12V620-400, chiral dopant S811, and laser dye DCM are used to prepare dye-doped chiral nematic liquid crystal laser sample. In order to investigate temperature-tunable lasing in negative dielectric chiral nematic liquid crystal, we measure the transmission and lasing spectrum of this sample. The photonic band gap (PBG) is observed to red shift with its width reducing from 71.2 nm to 40.2 nm, and its short-wavelength band edge moves 55.3 nm while the long-wavelength band edge only moves 24.9 nm. The wavelength of output laser is found to red shift from 614.4 nm at 20 ~C to 662.8 nm at 67 ~C, which is very different from the previous experimental phenomena. The refractive indices, parallel and perpendicular to the director in chiral nematic liquid crystal have different dependencies on temperature. The experiment shows that the pitch of this chiral nematic liquid crystal increases with the increase of temperature. The decrease in the PBG width, different shifts of band edges, and the red shift of laser wavelength are the results of refractive indices change and pitch thermal elongation.展开更多
Multi-conjugation adaptive optics(MCAOs) have been investigated and used in the large aperture optical telescopes for high-resolution imaging with large field of view(FOV).The atmospheric tomographic phase reconst...Multi-conjugation adaptive optics(MCAOs) have been investigated and used in the large aperture optical telescopes for high-resolution imaging with large field of view(FOV).The atmospheric tomographic phase reconstruction and projection of three-dimensional turbulence volume onto wavefront correctors,such as deformable mirrors(DMs) or liquid crystal wavefront correctors(LCWCs),is a very important step in the data processing of an MCAO's controller.In this paper,a method according to the wavefront reconstruction performance of MCAO is presented to evaluate the optimized configuration of multi laser guide stars(LGSs) and the reasonable conjugation heights of LCWCs.Analytical formulations are derived for the different configurations and are used to generate optimized parameters for MCAO.Several examples are given to demonstrate our LGSs configuration optimization method.Compared with traditional methods,our method has minimum wavefront tomographic error,which will be helpful to get higher imaging resolution at large FOV in MCAO.展开更多
Surface stabilized (anti) ferroelectric liquid crystal cells can be used as an optically addressed media for optical data processing. The structure of the cell has to contain a photo sensible agent, i.e, an absorbin...Surface stabilized (anti) ferroelectric liquid crystal cells can be used as an optically addressed media for optical data processing. The structure of the cell has to contain a photo sensible agent, i.e, an absorbing dye-doped orienting layer. The all-optical generation of the diffractive grating can be done due to the switching parameters of the smectic slab within cells with a sensitive layer. This Letter considers a study of the optically induced charge generation into the dye-doped layer, and the explanation of the phenomena of the selective molecular director reorientation, while cell driving what leads to the induction of phase grating.展开更多
In order to improve femtosecond laser throughput,a parallel processing system consisting of liquid crystal on silicon(LCOS)device as spatial light modulator is put forward.A method is described for displaying Fourier ...In order to improve femtosecond laser throughput,a parallel processing system consisting of liquid crystal on silicon(LCOS)device as spatial light modulator is put forward.A method is described for displaying Fourier hologram on LCOS,and a high uniformity of several diffraction peaks in the computer reconstruction is achieved.Application of this method to the parallel femtosecond laser processing is also demonstrated,and two intersecting rings and three tangent rings are fabricated respectively by one time in the photoresist.展开更多
Adaptive optics(AO) systems are widespread and considered as an essential part of any large aperture telescope for obtaining a high resolution imaging at present.To enlarge the imaging field of view(FOV),multi-las...Adaptive optics(AO) systems are widespread and considered as an essential part of any large aperture telescope for obtaining a high resolution imaging at present.To enlarge the imaging field of view(FOV),multi-laser guide stars(LGSs) are currently being investigated and used for the large aperture optical telescopes.LGS measurement is necessary and pivotal to obtain the cumulative phase distortion along a target in the multi-LGSs AO system.We propose a high precision phase reconstruction algorithm to estimate the phase for a target with an uncertain turbulence profile based on the interpolation.By comparing with the conventional average method,the proposed method reduces the root mean square(RMS) error from 130 nm to 85 nm with a 30% reduction for narrow FOV.We confirm that such phase reconstruction algorithm is validated for both narrow field AO and wide field AO.展开更多
In order to improve the damage threshold and enlarge the aperture of a laser beam shaper, photolithographic patterning technology is adopted to design a new type of liquid crystal binary mask. The inherent conductive ...In order to improve the damage threshold and enlarge the aperture of a laser beam shaper, photolithographic patterning technology is adopted to design a new type of liquid crystal binary mask. The inherent conductive metal layer of commercial liquid crystal electro-optical spatial light modulators is replaced by azobenzene-based photoalignment layers patterned by noncontact photolithography. Using the azobenzene-based photoalignment layer, a liquid crystal binary mask for beam shaping is fabricated. In addition, the shaping ability, damage threshold, write/erase flexibility and stability of the liquid crystal binary mask are tested. Using a 1 Hz near-IR(1064 nm) laser, the multiple-shot nanosecond damage threshold of the liquid crystal mask is measured to be higher than 15 J/cm^2. The damage threshold of the azobenzenebased photoalignment layer is higher than 50 J/cm^2 under the same testing conditions.展开更多
基金Project supported by the Doctoral Science Research Start-up Funding of Guizhou Normal University,China(Grant No.11904-0514162)the National Natural Science Foundation of China(Grant No.11474021)
文摘This work demonstrates the realization of a lasing in scattering media,which contains dispersive solution of Zn O nanoparticles(NPs) and laser dye 4-dicyanomethylene-2-methyle-6-(p-dimethylaminostyryl)-4H-pyran(DCM) in negative liquid crystals(LCs) that was injected into a cell.The lasing intensity of the dye-doped negative LC laser can be tuned from low to high if the NPs concentration is increased.The tunability of the laser is attributable to the clusters-sensitive feature in effective refractive index of the negative LCs.Such a tunable negative liquid crystal laser can be used in the fabrication of new optical sources,optical communication,and liquid crystal laser displays.
文摘Two ways of employing cholesteric liquid crystals in tunable dye lasers are considered: the cholesterics as distributed feedback medium and the cholesterics as resonator mirrors. In the dye doped distributed feedback cholesteric liquid crystal lasers the frequency tuning is achieved exploiting light induced effects or using a specially designed cell assembling a chiral dopant concentration gradient in combination with suitable distribution of different dyes. Another approach represents the lasing in a multilayer system consisting of a dye doped isotropic solvent sandwiched between two CLC layers.
基金supported by the National Key Research and Development Program of China(No.2022YFA1405000)the Natural Science Foundation of Jiangsu Province(Nos.BK20211277 and BK20210179)+2 种基金the National Natural Science Foundation of China(NSFC)(No.62105143)the Frontier Leading Technology Basic Research Project of Jiangsu Province(No.BK20212004)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX23_0971)。
文摘This study investigated direct fluorescence generation from a nematic liquid crystal(NLC)NJU-LDn-4 under femtosecond laser excitation.The absorption,transmittance,excitation,and emission spectra of the NLC were assessed.The relationship between the femtosecond pump power and fluorescence intensity was analyzed,revealing a quadratic increase and indicating that two-photon absorption(2PA)is the primary fluorescence mechanism.The LC microstructure was designed using photoalignment technology,allowing the generated fluorescence to reflect the corresponding structure.This research can establish a foundation for tunable LC microstructured fluorescence,with potential applications in fluorescence microscopy and optoelectronics.
基金supported by the National Natural Science Foundation of China(Grant No.61378042)the Outstanding Young Scholars Growth Plans of Colleges and Universities in Liaoning Province,China(Grant No.LJQ2013022)+1 种基金the Science and Technology Research of Liaoning Province,China(Grant No.L2010465)the Open Funds of Liaoning Province Key Laboratory of Laser and Optical Information of Shenyang Ligong University,China
文摘In this work, negative dielectric nematic liquid crystal SLC 12V620-400, chiral dopant S811, and laser dye DCM are used to prepare dye-doped chiral nematic liquid crystal laser sample. In order to investigate temperature-tunable lasing in negative dielectric chiral nematic liquid crystal, we measure the transmission and lasing spectrum of this sample. The photonic band gap (PBG) is observed to red shift with its width reducing from 71.2 nm to 40.2 nm, and its short-wavelength band edge moves 55.3 nm while the long-wavelength band edge only moves 24.9 nm. The wavelength of output laser is found to red shift from 614.4 nm at 20 ~C to 662.8 nm at 67 ~C, which is very different from the previous experimental phenomena. The refractive indices, parallel and perpendicular to the director in chiral nematic liquid crystal have different dependencies on temperature. The experiment shows that the pitch of this chiral nematic liquid crystal increases with the increase of temperature. The decrease in the PBG width, different shifts of band edges, and the red shift of laser wavelength are the results of refractive indices change and pitch thermal elongation.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11174274,11174279,61205021,11204299,61475152,and 61405194)the State Key Laboratory of Applied Optics,Changchun Institute of Optics,Fine Mechanics and Physics,Chinese Academy of Sciences
文摘Multi-conjugation adaptive optics(MCAOs) have been investigated and used in the large aperture optical telescopes for high-resolution imaging with large field of view(FOV).The atmospheric tomographic phase reconstruction and projection of three-dimensional turbulence volume onto wavefront correctors,such as deformable mirrors(DMs) or liquid crystal wavefront correctors(LCWCs),is a very important step in the data processing of an MCAO's controller.In this paper,a method according to the wavefront reconstruction performance of MCAO is presented to evaluate the optimized configuration of multi laser guide stars(LGSs) and the reasonable conjugation heights of LCWCs.Analytical formulations are derived for the different configurations and are used to generate optimized parameters for MCAO.Several examples are given to demonstrate our LGSs configuration optimization method.Compared with traditional methods,our method has minimum wavefront tomographic error,which will be helpful to get higher imaging resolution at large FOV in MCAO.
文摘Surface stabilized (anti) ferroelectric liquid crystal cells can be used as an optically addressed media for optical data processing. The structure of the cell has to contain a photo sensible agent, i.e, an absorbing dye-doped orienting layer. The all-optical generation of the diffractive grating can be done due to the switching parameters of the smectic slab within cells with a sensitive layer. This Letter considers a study of the optically induced charge generation into the dye-doped layer, and the explanation of the phenomena of the selective molecular director reorientation, while cell driving what leads to the induction of phase grating.
基金National Natural Science Foundation of China(No.51275502)Natural Science Key Project of Anhui Province(No.KJ2011A014)+1 种基金China Postdoctoral Science Foundation funded project(NO.2012M511416)The Innovation Foundationof Anhui University and the Personnel Construction Project of Anhui University
文摘In order to improve femtosecond laser throughput,a parallel processing system consisting of liquid crystal on silicon(LCOS)device as spatial light modulator is put forward.A method is described for displaying Fourier hologram on LCOS,and a high uniformity of several diffraction peaks in the computer reconstruction is achieved.Application of this method to the parallel femtosecond laser processing is also demonstrated,and two intersecting rings and three tangent rings are fabricated respectively by one time in the photoresist.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11174274,11174279,61205021,11204299,61475152,and 61405194)State Key Laboratory of Applied Optics,Changchun Institute of Optics,Fine Mechanics and Physics,Chinese Academy of Sciences
文摘Adaptive optics(AO) systems are widespread and considered as an essential part of any large aperture telescope for obtaining a high resolution imaging at present.To enlarge the imaging field of view(FOV),multi-laser guide stars(LGSs) are currently being investigated and used for the large aperture optical telescopes.LGS measurement is necessary and pivotal to obtain the cumulative phase distortion along a target in the multi-LGSs AO system.We propose a high precision phase reconstruction algorithm to estimate the phase for a target with an uncertain turbulence profile based on the interpolation.By comparing with the conventional average method,the proposed method reduces the root mean square(RMS) error from 130 nm to 85 nm with a 30% reduction for narrow FOV.We confirm that such phase reconstruction algorithm is validated for both narrow field AO and wide field AO.
基金supported by the International Partnership Program of Chinese Academy of Sciences (No. 181231KYSB20170022)
文摘In order to improve the damage threshold and enlarge the aperture of a laser beam shaper, photolithographic patterning technology is adopted to design a new type of liquid crystal binary mask. The inherent conductive metal layer of commercial liquid crystal electro-optical spatial light modulators is replaced by azobenzene-based photoalignment layers patterned by noncontact photolithography. Using the azobenzene-based photoalignment layer, a liquid crystal binary mask for beam shaping is fabricated. In addition, the shaping ability, damage threshold, write/erase flexibility and stability of the liquid crystal binary mask are tested. Using a 1 Hz near-IR(1064 nm) laser, the multiple-shot nanosecond damage threshold of the liquid crystal mask is measured to be higher than 15 J/cm^2. The damage threshold of the azobenzenebased photoalignment layer is higher than 50 J/cm^2 under the same testing conditions.