Thirty genotypes from rice germplasm were identified under photooxidation and shading condition and divided into four basic types : (1) cultivars tolerant to both photooxidation and shading, (2) cultivars tolerant to...Thirty genotypes from rice germplasm were identified under photooxidation and shading condition and divided into four basic types : (1) cultivars tolerant to both photooxidation and shading, (2) cultivars tolerant to photooxidation but sensitive to shading, (3) cultivars tolerant to shading but sensitive to photooxidation, and (4) cultivars sensitive to photooxidation and shading. A comparative study of photosynthetic characteristics of a cultivar (cv. Wuyujing 3) that is tolerant and a cultivar (cv. Xiangxian) that is sensitive to both photoinhibition and shading showed that the photochemical efficiency of PSⅡ ( F v/F m ) and the content of PSⅡ_D1 protein in the tolerant cultivar “Wuyujing 3” decreased less under photoinhibition conditions as compared with “Xiangxian”. Under photooxidation conditions, superoxide dismutase was induced rapidly to a higher level and the active oxygen O - built up to a lower level in “Wuyujing 3” than in “Xiangxian”. At the same time, the photosynthetic rate decreased by 23% in “Wuyujing 3” vs. 64% in “Xiangxian”. Shading (20% natural light) during the booting stage caused only small decreases (7%-13%) in RuBisCO activity and the photosynthetic rate in “Wuyujing 3” but showed marked decreases (57%-64%) in “Xiangxian” which corresponded to the decreases in grain yield in the two cultivars (38% and 73%, respectively). The correlation analysis showed that the tolerance to photooxidation is mainly related to PSⅡ_D1 and that to shading is mainly related to RuBisCO activity. This study provided a simple and effective screening method and physiological basis for crop breeding in enhancing tolerance to both high and low radiation.展开更多
Using various high-yield rices (Oryza sativa L.) such as japonica cultivar 9516, two parental line hybrid rice between subspecies with more japonica element Peiai 64/E32, Liangyoupeijiu (Peiai 64/9311), and indica hyb...Using various high-yield rices (Oryza sativa L.) such as japonica cultivar 9516, two parental line hybrid rice between subspecies with more japonica element Peiai 64/E32, Liangyoupeijiu (Peiai 64/9311), and indica hybrid rices X07S/Zihui 100, Gangyou 881, Shanyou 63 as the materials, the characteristics of chlorophyll fluorescence and membrane-lipid peroxidation of detached leaves at booting stage under photooxidation conditions were studied. In comparison with indica hybrid rice, after the photooxidation treatment, the primary photochemical efficiency of PS II (F-v/F-m), quantum yield of linear electron transport of PS II (Phi(PSII)) and photochemical quenching coefficient (qP) in japonica cultivar and hybrid rice with japonica decreased less. This indicated that high-yield rice with japonica was able to maintain higher capability of light energy conversion, resulting in the alleviation of photoinhibition. Meanwhile, the higher activities of protective enzymes such as superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) led to the less accumulation of endogenous active oxygen (O-(2)(radical anion), H2O2) and less content of the malondialdehyde (MDA) and the less decline of chlorophyll and protein contents, indicating a stronger tolerance to photooxidation. The changes in contents of chlorophyll and protein among various nee cultivars during photooxidation treatment were consistent with the decline of chlorophyll content from heading stage to maturation stage under natural conditions. Statistical analysis showed that there was a significant correlation between the indexes of tolerance to photooxidation and the rate of seed setting, implying that the cultivar tolerated to photooxidation had higher resistance to early aging of leaf. These results suggested that from a view of superhigh-yield breeding, considering both the utilization of heterosis and the resistance to early aging of leaf, introduction of japonica element tolerating to photooxidation into the rice sterile line (maternal plant) is a breeding strategy worthy to pay great attention to.展开更多
The switch from C-3 to CAM pathway was induced by water stress in a C-3/CAM intermediate plant Sedum spectabile Boreau. Typical CAM criteria were observed upon 15 d of withholding water. Leaf delta(13)C value (-%) and...The switch from C-3 to CAM pathway was induced by water stress in a C-3/CAM intermediate plant Sedum spectabile Boreau. Typical CAM criteria were observed upon 15 d of withholding water. Leaf delta(13)C value (-%) and water content showed a linear correlation fashion. Chlorophyll fluorescence parameters and antioxidative capacity were altered by water stress. Phi(PSII) and q(P) were reduced by 50% and 34% of the control, respectively, while NPQ rose ca. 180%. SOD activity and ability to scavenge DPPH. free radical went down but membrane permeability changed slightly. However, when an additional photooxidation by MV with high PPFD was carried out with leaf discs from watered (C-3 mode) and drought plants (CAM mode), q(P) and Phi(PSII) in leaves at induced CAM mode stage continuously decreased to a very low level. High 1 - q(P) value (0.86) and 1 - q(P)/NPQ ratio (>1) indicated the presence of high reduction state and unbalance of light energy budget. Together with the marked loss of membrane integral, it was evidenced that photooxidative damage was more serious in the induced CAM mode than in the C-3 mode. No advantage of photooxidation tolerance was found at the induced CAM expression stage of the facultative CAM plant, as compared with its C-3 mode stage, and also with the constitutive CAM plants reported previously. The differences in photooxidation sensitivity between the inducible CAM expressing plant and the constitutive CAM plant were discussed.展开更多
Hydroxyl radical (.OH)-initiated photooxidation reaction of toluene was carried out in a self-made smog chamber. Four individual seed aerosols such as ammonium sulfate, ammonium nitrate, sodium silicate and calcium ...Hydroxyl radical (.OH)-initiated photooxidation reaction of toluene was carried out in a self-made smog chamber. Four individual seed aerosols such as ammonium sulfate, ammonium nitrate, sodium silicate and calcium chloride, were introduced into the chamber to assess their influence on the growth of secondary organic aerosols (SOA). It was found that the low concentration of seed aerosols might lead to high concentration of SOA particles. Seed aerosols would promote rates of SOA formation at the start of the reaction and inhibit its formation rate with prolonging the reaction time. In the case of ca. 9000 pt/cm^3 seed aerosol load, the addition of sodium silicate induced a same effect on the SOA formation as ammonium nitrate. The influence of the four individual seed aerosols on the generation of SOA decreased in the order of calcium chloride〉sodium silicate and ammonium nitrate〉ammonium sulfate.展开更多
Using six high yield varieties from different ecological districts in China the parameters of Chl fluorescence, the performance of membrane lipid peroxidation and the reduction of Chl content in flag leaf under natura...Using six high yield varieties from different ecological districts in China the parameters of Chl fluorescence, the performance of membrane lipid peroxidation and the reduction of Chl content in flag leaf under natural condition at the later developmental stages (from heading stage to mature stage). The results showed that Fv/Fm , decreased gradually, the excessive light energy led to the accumulation of active oxygen O2-, H2O2 and the product of membrane-lipid peroxidation, MDA, which resulted in the reduction of Chl content and early aging due to photooxidation during the course of senescence of flag leaf. This phenomenon varied obviously in rice varieties. When comparina japonica tolerant to photooxidation, Fv/Fm in indica shanyou 63 susceptible to photoxidation decreased significantly. An increase of active oxygen and a sharp drop of Chl content, resulted in 'yellowish' early aging and influenced filling and setting of rice grain. The mechanism on early aging in indica was related to light and temperature conditions in filling stages. On a fine day (above 251), PS Ⅱ reaction center exhibited a dynamic change on revisable inactivation. Under strong midday light, PS Ⅱ function in indica exhibited obvious down-regulation and photoinhibition; Under strong light with low temperature, PS Ⅱ resulted in photodamage, showing early aging, which were related to the degradation of PSⅡ - D1 Protein and the inhibition of the endogenous protecting system such as Xanthophyll cycle and the enzymes of scavenging active oxygen. The results suggested that for a view of high-yield breeding, on the basis of a good type-plant, giving consideration to the utilization of heterosis and resistance to early aging, selecting japonica or a sterile line with japonice genotype as maternal was a breeding strategy worthy of being paid more attention.展开更多
Under simulated atmospheric condition, photoomdation for HCFC-22 + H2O2, HCFC-22 + H2O2+O2, HFC-134A + H2O2 and HFC-134A + H2O2+ O2 systems were studied.H2O2 was irradiated by low pressure mercury lamp and produced OH...Under simulated atmospheric condition, photoomdation for HCFC-22 + H2O2, HCFC-22 + H2O2+O2, HFC-134A + H2O2 and HFC-134A + H2O2+ O2 systems were studied.H2O2 was irradiated by low pressure mercury lamp and produced OH radicals. The OH radicals can initiate photooxidation of HCFC-22 and 134A. The products of photooxidation were determined by a Fourier Transform infrared Spectroscopy with a 20ml long path cell. The products were COF2,CO2, HCI, H2O and HF for HCFC-22 + H2O2 system, HO, CO2, HCI and HF for HCFC-22 +H2O2 +O2 system, HCOF, CF3OOCF3,CO2, H2O and HF for HFC-134A +H2O2 system, HCOF, CO2, H2O, and HF for HFC-134A + H2O2+ O2 system. Based on those results, the mechanisms of photooxidation were suggested.展开更多
Copper phthalocyanine was selected as the photosensitizer to sensitize TiO2 in this experiment with furfural as the target pollutant. The composite catalysts(TiO2/CuPC) obtained showed a great activity under a xenon...Copper phthalocyanine was selected as the photosensitizer to sensitize TiO2 in this experiment with furfural as the target pollutant. The composite catalysts(TiO2/CuPC) obtained showed a great activity under a xenon lamp. By experiments, the optimal preparation conditions of the composite catalysts were set as follows : the CuPC loading mass fraction was 1.5%, the mass fraction of acetylacetone was 0. 3% , and the stirring time was 10 h. UV-Vis diffuse reflectance spectra, XRD, and BET were used to characterize the properties of the composite catalysts, which showed that after loading CuPC on TiO2, the composite catalyst retained the same crystal structure as pure TiO2 and the wavelength range of its absorption spectrum was broadened to 600-700 nm while its surface area was smaller than that of the pure TiO2. Under the optimal conditions, 20 mg/L furfural solution was degraded by nearly 90% and TOC by about 70%. When the catalyst was reused 6 times, the activity of the catalyst was still retained by about 75%.展开更多
Photooxidation reaction of toluene in smog chamber systems was initiated by the UV radiation of tolucne/CH5ONO/NOx mixtures. The products of the photooxidation reaction of toluene and its subsequent reactions were ana...Photooxidation reaction of toluene in smog chamber systems was initiated by the UV radiation of tolucne/CH5ONO/NOx mixtures. The products of the photooxidation reaction of toluene and its subsequent reactions were analyzed directly utilizing Fourier transform infrared spectrometer (FTIR). Detailed assignments to FTIR spectrum of gas-phase products were given. The information of some important functional groups in the products, such as, carbonyl groups (C-O), hydroxyl groups (-OH), carboxylic acid (- COOH), C-C bonding, N O bonding and C-H bonding (C H), was got from this analysis. These results were compared to those analyzed by aerosol time of flight mass spectrometer (ATOFMS). It was found that there are some differcnccs between FTIR analysis of gas-phase products and that of particle-phase, for example, the products with carbonyl groups, which were connected to unsaturated chemical bonds, was relatively higher in the gas phase, while kctoncs, aldehydes, carboxylic acid and organonitrates were the dominant functional groups in the aerosol-phase reaction products. The possible reaction pathways of some important products in the gas phase were also discussed.展开更多
The effects of accelerated photooxidation on the molecular weight and thermal and mechanical properties of Cast PHBV and PHBV/Cloisite 30B(3 wt%)bionanocomposites are investigated herein.Through size exclusion chromat...The effects of accelerated photooxidation on the molecular weight and thermal and mechanical properties of Cast PHBV and PHBV/Cloisite 30B(3 wt%)bionanocomposites are investigated herein.Through size exclusion chromatography(SEC)analysis,a significant decrease in both weight and number average molecular weights was observed for all irradiated samples over time,resulting from the chain scission mechanism.Differential scanning calorimetry(DSC)data indicated a decrease in degree of crystallinity and melting temperature after UV exposure,with the appearance of double melting peaks related to the changes in the crystal structure of PHBV.Thermal stability,tensile and thermo-mechanical properties were also reduced consecutively in photooxidation,being more pronounced for Cast PHBV.This study shows that the incorporation of Cloisite 30B in PHBV provides a better resistance to photooxidation in comparison with the neat polymer.展开更多
The kinetic characteristic of photolysis of cypermethrin (CPM) sensitized by acetophenone (AP) and the effect of probe substance 2,6-Di-tert-butyl-4-methylphenol and tetralin is studied in this report. It showed that ...The kinetic characteristic of photolysis of cypermethrin (CPM) sensitized by acetophenone (AP) and the effect of probe substance 2,6-Di-tert-butyl-4-methylphenol and tetralin is studied in this report. It showed that the photolysis rate of CPM increases slightly with the increase of AP concentration; photolysis rate of CPM has no relationship with [CPM] itself; The more dipolar moment the solvent has, the more the interaction between radical and solvent has, and the slower the photolysis of CPM is. The addition of radical probe substance confirms that ROO·is more than RO·. The steady-state concentration of ROO·is about 10?8 mol·L?1.展开更多
In this paper, the PMMA films doped with N,N'-diphenyl-N,N'-di(m-tolyl)-benzidine and rubrene were fabricated by spin coating, and the effect of photooxidation on the photoluminescence of the doped PMMA thin f...In this paper, the PMMA films doped with N,N'-diphenyl-N,N'-di(m-tolyl)-benzidine and rubrene were fabricated by spin coating, and the effect of photooxidation on the photoluminescence of the doped PMMA thin films was investigated. The results showed that under the irradiation of 350nm UV light, N,N'-diphenyl-N,N'-di(m-tolyl)-benzidine can sensitized rubrene and results in the enhancement in the photooxidation of rubrene. The effect of photooxidation on the photoluminescence from rubrene was more obvious. Both lifetime measurement and in situ measurement of photoluminescence showed that rubrene molecules exist in two chemical surroundings.展开更多
The aim of this study was to investigate the effects of relative spatial position of stigmasterol on its photooxidation stability in different particles.Phytosterol oxidation products(POPs)from phytosterol oxidation w...The aim of this study was to investigate the effects of relative spatial position of stigmasterol on its photooxidation stability in different particles.Phytosterol oxidation products(POPs)from phytosterol oxidation were successfully isolated and studied using solid phase extraction(SPE)technology in conjunction with GC-MS.The photooxidation stability of stigmasterol in four particles was as follows:zein stabilized particles(ZPs)≈zein-pectin stabilized particles(ZPPs)>soy protein isolate(SPI)-pectin stabilized particles(SPPs)>SPI stabilized particles(SPs).7β-Hydroxy and 5β,6β-epoxy was the main POPs in the first and second oxidation stages,respectively,which reached 8,945±43μg/g and 6,010±289μg/g after 240 min UV light exposure treatment in SPs.When stigmasterol was hydrophobically adsorbed on the surface of SPs,the network gel generated by pectin outside SPPs prevented photooxidation of stigmasterol.When stigmasterol was encapsulated in the interior of ZPs,the blocking effect of pectin in ZPPs became insignificant.The study provided a feasible development direction for the storage and quality control of phytosterols as dietary supplements.展开更多
In this paper, direct photooxidation of benzothiazolone cyanine dye: in acetonitrile was studied. The photoproducts had been identified by (HNMR)-H-1 and fast atom bombardment (FAB) mass spectrometry. The results show...In this paper, direct photooxidation of benzothiazolone cyanine dye: in acetonitrile was studied. The photoproducts had been identified by (HNMR)-H-1 and fast atom bombardment (FAB) mass spectrometry. The results showed that the N-ethylbenzothiazolone (I), the ionic acid (II), and ionic aldehyde (III) are the principal photoproducts.展开更多
Results of triplet-triplet energy transfer from biacetyl to OPVs and OPV tripiet state quenching by 1, 4-diazabicyclo[2.2.2] octane (DABCO) suggested that tripiet state of oligophenylenevinylenes(OPVs) directly takes ...Results of triplet-triplet energy transfer from biacetyl to OPVs and OPV tripiet state quenching by 1, 4-diazabicyclo[2.2.2] octane (DABCO) suggested that tripiet state of oligophenylenevinylenes(OPVs) directly takes part in their photooxidative degradation instead of just generating singlet oxygen.展开更多
In this study,diodo boron dipyrromethene(BODIPY)is employed a8 the energy donor and 3,4,9,10-perylene tetracarboxylic dianhydride(PDA)as the energy acceptor,enabling the synthesis of two new compounds:a BODIPY-perylen...In this study,diodo boron dipyrromethene(BODIPY)is employed a8 the energy donor and 3,4,9,10-perylene tetracarboxylic dianhydride(PDA)as the energy acceptor,enabling the synthesis of two new compounds:a BODIPY-perylene dyad named P1,and a triad named P2.To investigate the impact of the energy donor on the photophysical processes of the system,P1 comprises one diodo-BODIPY unit and one PDA unit,whereas P2 contains two diodo-BODIPY moieties and one PDA unit.Due to the good spectral complementarity between diiodo-BODIPY and PDA,these two compounds exhibit excellent light-harvesting capabilities in the 400-620 nm range.Steady-state fluorescence spectra demonstrate that when preferentially exciting the diodo-BODIPY moiety,it can effectively transfer energy to PDA;when selectively exciting the PDA moiety,quenching of PDA fluorescence is observed in both P1 and P2.Nanosecond transient absorption results show that both compounds can efficiently generate triplet excited states,which are located on the PDA part.The lifetimes of the triplet states for these two compounds are 103 and 89μs,respectively,significantly longer than that of diiodo-BODIPY.The results from the photooxidation experiments reveal that both P1 and P2 demonstrate good photostability and photooxidation capabilities,with P2 showing superior photooxidative efficiency.The photooxidation rate constant for P2 is 1.3 times that of P1,and its singlet oxygen quantum yield is 1.6 times that of P1.The results obtained here offer valuable insights for designing new photosensitizers.展开更多
Into the photooxidation process, several factors such as pH, time of irradiation, dose of UV light, lamp power, contaminant concentration, turbidity of the solution and the presence of salts can interfere with the pho...Into the photooxidation process, several factors such as pH, time of irradiation, dose of UV light, lamp power, contaminant concentration, turbidity of the solution and the presence of salts can interfere with the photodegradation of pollutants. This research aims to evaluate the influence of salts: NaCl, MgCl2, CaCI2, BaC12, CuCl2, Na2SO4, MgSO4, MnSO4, FeSO4, CuSO4, Na3PO4, K2CrO4 and K2Cr207 in concentrations of 0.0005 M, 0.005 M and 0.05 M during photodegradation of aqueous solution of 59.5 mg/L of nitrobenzene at a pH of 2.5. It was observed that the presence of salts such as CuCI2, CuSO4, FeSO4, K2CrO4 and K2Cr207 interfere negatively in the system UV/H202 applied for degradation of nitrobenzene; possibly by oxidation of Fe2+ to Fe3+ and Cu+ to Cu2+ in the Cr case, due to the difficulty of transforming the Cr6+ to Cr3+ or because these solutions have color and act as radiation absorbing filter.展开更多
This study was intended to determine the effectiveness of ascorbic acid microemulsion for inhibiting photooxidation of virgin coconut oil (VCO). The ascorbic acid microemulsion was prepared by mixing ascorbic acid, ...This study was intended to determine the effectiveness of ascorbic acid microemulsion for inhibiting photooxidation of virgin coconut oil (VCO). The ascorbic acid microemulsion was prepared by mixing ascorbic acid, deionized water, surfactant mixture, and VCO as continuous phase. Ascorbic acid microemulsion at 50, 100, 150, 200, or 250 ppm was dispersed into VCO. The same level of ascorbyl palmitate, TBHQ (tertiary butylhydroquinone), and BHA (butylated hidroxyanisole) were added into VCO and used for comparison. All of these samples were subsequently subjected to photooxidation under fluorescent light exposure (4,000 lux) for up to 8 hours at room temperature (30 ~ 1 ~C). Peroxide values and p-anisidine values of photooxidized samples were measured at 1 hour interval. The result indicated that at the level of 250 ppm, ascorbic acid which was included into the microemulsion system effectively inhibited photooxidation of VCO in comparison with the other antioxidants. This study confirmed that a highly hydrophilic singlet oxygen quencher (SOQ) such as ascorbic acid can be successfully incorporated into the microemulsion system and the addition of ascorbic acid microemulsion effectively inhibited photooxidation of VCO during storage under fluorescent light.展开更多
文摘Thirty genotypes from rice germplasm were identified under photooxidation and shading condition and divided into four basic types : (1) cultivars tolerant to both photooxidation and shading, (2) cultivars tolerant to photooxidation but sensitive to shading, (3) cultivars tolerant to shading but sensitive to photooxidation, and (4) cultivars sensitive to photooxidation and shading. A comparative study of photosynthetic characteristics of a cultivar (cv. Wuyujing 3) that is tolerant and a cultivar (cv. Xiangxian) that is sensitive to both photoinhibition and shading showed that the photochemical efficiency of PSⅡ ( F v/F m ) and the content of PSⅡ_D1 protein in the tolerant cultivar “Wuyujing 3” decreased less under photoinhibition conditions as compared with “Xiangxian”. Under photooxidation conditions, superoxide dismutase was induced rapidly to a higher level and the active oxygen O - built up to a lower level in “Wuyujing 3” than in “Xiangxian”. At the same time, the photosynthetic rate decreased by 23% in “Wuyujing 3” vs. 64% in “Xiangxian”. Shading (20% natural light) during the booting stage caused only small decreases (7%-13%) in RuBisCO activity and the photosynthetic rate in “Wuyujing 3” but showed marked decreases (57%-64%) in “Xiangxian” which corresponded to the decreases in grain yield in the two cultivars (38% and 73%, respectively). The correlation analysis showed that the tolerance to photooxidation is mainly related to PSⅡ_D1 and that to shading is mainly related to RuBisCO activity. This study provided a simple and effective screening method and physiological basis for crop breeding in enhancing tolerance to both high and low radiation.
文摘Using various high-yield rices (Oryza sativa L.) such as japonica cultivar 9516, two parental line hybrid rice between subspecies with more japonica element Peiai 64/E32, Liangyoupeijiu (Peiai 64/9311), and indica hybrid rices X07S/Zihui 100, Gangyou 881, Shanyou 63 as the materials, the characteristics of chlorophyll fluorescence and membrane-lipid peroxidation of detached leaves at booting stage under photooxidation conditions were studied. In comparison with indica hybrid rice, after the photooxidation treatment, the primary photochemical efficiency of PS II (F-v/F-m), quantum yield of linear electron transport of PS II (Phi(PSII)) and photochemical quenching coefficient (qP) in japonica cultivar and hybrid rice with japonica decreased less. This indicated that high-yield rice with japonica was able to maintain higher capability of light energy conversion, resulting in the alleviation of photoinhibition. Meanwhile, the higher activities of protective enzymes such as superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) led to the less accumulation of endogenous active oxygen (O-(2)(radical anion), H2O2) and less content of the malondialdehyde (MDA) and the less decline of chlorophyll and protein contents, indicating a stronger tolerance to photooxidation. The changes in contents of chlorophyll and protein among various nee cultivars during photooxidation treatment were consistent with the decline of chlorophyll content from heading stage to maturation stage under natural conditions. Statistical analysis showed that there was a significant correlation between the indexes of tolerance to photooxidation and the rate of seed setting, implying that the cultivar tolerated to photooxidation had higher resistance to early aging of leaf. These results suggested that from a view of superhigh-yield breeding, considering both the utilization of heterosis and the resistance to early aging of leaf, introduction of japonica element tolerating to photooxidation into the rice sterile line (maternal plant) is a breeding strategy worthy to pay great attention to.
文摘The switch from C-3 to CAM pathway was induced by water stress in a C-3/CAM intermediate plant Sedum spectabile Boreau. Typical CAM criteria were observed upon 15 d of withholding water. Leaf delta(13)C value (-%) and water content showed a linear correlation fashion. Chlorophyll fluorescence parameters and antioxidative capacity were altered by water stress. Phi(PSII) and q(P) were reduced by 50% and 34% of the control, respectively, while NPQ rose ca. 180%. SOD activity and ability to scavenge DPPH. free radical went down but membrane permeability changed slightly. However, when an additional photooxidation by MV with high PPFD was carried out with leaf discs from watered (C-3 mode) and drought plants (CAM mode), q(P) and Phi(PSII) in leaves at induced CAM mode stage continuously decreased to a very low level. High 1 - q(P) value (0.86) and 1 - q(P)/NPQ ratio (>1) indicated the presence of high reduction state and unbalance of light energy budget. Together with the marked loss of membrane integral, it was evidenced that photooxidative damage was more serious in the induced CAM mode than in the C-3 mode. No advantage of photooxidation tolerance was found at the induced CAM expression stage of the facultative CAM plant, as compared with its C-3 mode stage, and also with the constitutive CAM plants reported previously. The differences in photooxidation sensitivity between the inducible CAM expressing plant and the constitutive CAM plant were discussed.
基金Project supported by the National Natural Science Foundation of China(No.20477043)the Knowledge Innovation Program of Chinese Academy of Sciences(No.KZCX2-SW-H08).*
文摘Hydroxyl radical (.OH)-initiated photooxidation reaction of toluene was carried out in a self-made smog chamber. Four individual seed aerosols such as ammonium sulfate, ammonium nitrate, sodium silicate and calcium chloride, were introduced into the chamber to assess their influence on the growth of secondary organic aerosols (SOA). It was found that the low concentration of seed aerosols might lead to high concentration of SOA particles. Seed aerosols would promote rates of SOA formation at the start of the reaction and inhibit its formation rate with prolonging the reaction time. In the case of ca. 9000 pt/cm^3 seed aerosol load, the addition of sodium silicate induced a same effect on the SOA formation as ammonium nitrate. The influence of the four individual seed aerosols on the generation of SOA decreased in the order of calcium chloride〉sodium silicate and ammonium nitrate〉ammonium sulfate.
基金supported in part by the National Key Basic Research and Development Plan of China(G1998010100).
文摘Using six high yield varieties from different ecological districts in China the parameters of Chl fluorescence, the performance of membrane lipid peroxidation and the reduction of Chl content in flag leaf under natural condition at the later developmental stages (from heading stage to mature stage). The results showed that Fv/Fm , decreased gradually, the excessive light energy led to the accumulation of active oxygen O2-, H2O2 and the product of membrane-lipid peroxidation, MDA, which resulted in the reduction of Chl content and early aging due to photooxidation during the course of senescence of flag leaf. This phenomenon varied obviously in rice varieties. When comparina japonica tolerant to photooxidation, Fv/Fm in indica shanyou 63 susceptible to photoxidation decreased significantly. An increase of active oxygen and a sharp drop of Chl content, resulted in 'yellowish' early aging and influenced filling and setting of rice grain. The mechanism on early aging in indica was related to light and temperature conditions in filling stages. On a fine day (above 251), PS Ⅱ reaction center exhibited a dynamic change on revisable inactivation. Under strong midday light, PS Ⅱ function in indica exhibited obvious down-regulation and photoinhibition; Under strong light with low temperature, PS Ⅱ resulted in photodamage, showing early aging, which were related to the degradation of PSⅡ - D1 Protein and the inhibition of the endogenous protecting system such as Xanthophyll cycle and the enzymes of scavenging active oxygen. The results suggested that for a view of high-yield breeding, on the basis of a good type-plant, giving consideration to the utilization of heterosis and resistance to early aging, selecting japonica or a sterile line with japonice genotype as maternal was a breeding strategy worthy of being paid more attention.
文摘Under simulated atmospheric condition, photoomdation for HCFC-22 + H2O2, HCFC-22 + H2O2+O2, HFC-134A + H2O2 and HFC-134A + H2O2+ O2 systems were studied.H2O2 was irradiated by low pressure mercury lamp and produced OH radicals. The OH radicals can initiate photooxidation of HCFC-22 and 134A. The products of photooxidation were determined by a Fourier Transform infrared Spectroscopy with a 20ml long path cell. The products were COF2,CO2, HCI, H2O and HF for HCFC-22 + H2O2 system, HO, CO2, HCI and HF for HCFC-22 +H2O2 +O2 system, HCOF, CF3OOCF3,CO2, H2O and HF for HFC-134A +H2O2 system, HCOF, CO2, H2O, and HF for HFC-134A + H2O2+ O2 system. Based on those results, the mechanisms of photooxidation were suggested.
基金Jilin Scientific Research Committee Foundation(No 20010422)
文摘Copper phthalocyanine was selected as the photosensitizer to sensitize TiO2 in this experiment with furfural as the target pollutant. The composite catalysts(TiO2/CuPC) obtained showed a great activity under a xenon lamp. By experiments, the optimal preparation conditions of the composite catalysts were set as follows : the CuPC loading mass fraction was 1.5%, the mass fraction of acetylacetone was 0. 3% , and the stirring time was 10 h. UV-Vis diffuse reflectance spectra, XRD, and BET were used to characterize the properties of the composite catalysts, which showed that after loading CuPC on TiO2, the composite catalyst retained the same crystal structure as pure TiO2 and the wavelength range of its absorption spectrum was broadened to 600-700 nm while its surface area was smaller than that of the pure TiO2. Under the optimal conditions, 20 mg/L furfural solution was degraded by nearly 90% and TOC by about 70%. When the catalyst was reused 6 times, the activity of the catalyst was still retained by about 75%.
基金The National Natural Science Foundation of China (No. 20477043), the Knowledge Innovation Foundation of Chinese Academy ofSciences (No. KJCX2-SW-H08) and the National Synchrotron Graduation Innovation Foundation of Ministry of Education of China (Hefei)
文摘Photooxidation reaction of toluene in smog chamber systems was initiated by the UV radiation of tolucne/CH5ONO/NOx mixtures. The products of the photooxidation reaction of toluene and its subsequent reactions were analyzed directly utilizing Fourier transform infrared spectrometer (FTIR). Detailed assignments to FTIR spectrum of gas-phase products were given. The information of some important functional groups in the products, such as, carbonyl groups (C-O), hydroxyl groups (-OH), carboxylic acid (- COOH), C-C bonding, N O bonding and C-H bonding (C H), was got from this analysis. These results were compared to those analyzed by aerosol time of flight mass spectrometer (ATOFMS). It was found that there are some differcnccs between FTIR analysis of gas-phase products and that of particle-phase, for example, the products with carbonyl groups, which were connected to unsaturated chemical bonds, was relatively higher in the gas phase, while kctoncs, aldehydes, carboxylic acid and organonitrates were the dominant functional groups in the aerosol-phase reaction products. The possible reaction pathways of some important products in the gas phase were also discussed.
文摘The effects of accelerated photooxidation on the molecular weight and thermal and mechanical properties of Cast PHBV and PHBV/Cloisite 30B(3 wt%)bionanocomposites are investigated herein.Through size exclusion chromatography(SEC)analysis,a significant decrease in both weight and number average molecular weights was observed for all irradiated samples over time,resulting from the chain scission mechanism.Differential scanning calorimetry(DSC)data indicated a decrease in degree of crystallinity and melting temperature after UV exposure,with the appearance of double melting peaks related to the changes in the crystal structure of PHBV.Thermal stability,tensile and thermo-mechanical properties were also reduced consecutively in photooxidation,being more pronounced for Cast PHBV.This study shows that the incorporation of Cloisite 30B in PHBV provides a better resistance to photooxidation in comparison with the neat polymer.
文摘The kinetic characteristic of photolysis of cypermethrin (CPM) sensitized by acetophenone (AP) and the effect of probe substance 2,6-Di-tert-butyl-4-methylphenol and tetralin is studied in this report. It showed that the photolysis rate of CPM increases slightly with the increase of AP concentration; photolysis rate of CPM has no relationship with [CPM] itself; The more dipolar moment the solvent has, the more the interaction between radical and solvent has, and the slower the photolysis of CPM is. The addition of radical probe substance confirms that ROO·is more than RO·. The steady-state concentration of ROO·is about 10?8 mol·L?1.
文摘In this paper, the PMMA films doped with N,N'-diphenyl-N,N'-di(m-tolyl)-benzidine and rubrene were fabricated by spin coating, and the effect of photooxidation on the photoluminescence of the doped PMMA thin films was investigated. The results showed that under the irradiation of 350nm UV light, N,N'-diphenyl-N,N'-di(m-tolyl)-benzidine can sensitized rubrene and results in the enhancement in the photooxidation of rubrene. The effect of photooxidation on the photoluminescence from rubrene was more obvious. Both lifetime measurement and in situ measurement of photoluminescence showed that rubrene molecules exist in two chemical surroundings.
基金This work was supported by Zhejiang Province Natural Science Foundation(LGD22C200001)the Key Research and Development Program of Zhejiang province(2021C02019&2020C02046).
文摘The aim of this study was to investigate the effects of relative spatial position of stigmasterol on its photooxidation stability in different particles.Phytosterol oxidation products(POPs)from phytosterol oxidation were successfully isolated and studied using solid phase extraction(SPE)technology in conjunction with GC-MS.The photooxidation stability of stigmasterol in four particles was as follows:zein stabilized particles(ZPs)≈zein-pectin stabilized particles(ZPPs)>soy protein isolate(SPI)-pectin stabilized particles(SPPs)>SPI stabilized particles(SPs).7β-Hydroxy and 5β,6β-epoxy was the main POPs in the first and second oxidation stages,respectively,which reached 8,945±43μg/g and 6,010±289μg/g after 240 min UV light exposure treatment in SPs.When stigmasterol was hydrophobically adsorbed on the surface of SPs,the network gel generated by pectin outside SPPs prevented photooxidation of stigmasterol.When stigmasterol was encapsulated in the interior of ZPs,the blocking effect of pectin in ZPPs became insignificant.The study provided a feasible development direction for the storage and quality control of phytosterols as dietary supplements.
文摘In this paper, direct photooxidation of benzothiazolone cyanine dye: in acetonitrile was studied. The photoproducts had been identified by (HNMR)-H-1 and fast atom bombardment (FAB) mass spectrometry. The results showed that the N-ethylbenzothiazolone (I), the ionic acid (II), and ionic aldehyde (III) are the principal photoproducts.
文摘Results of triplet-triplet energy transfer from biacetyl to OPVs and OPV tripiet state quenching by 1, 4-diazabicyclo[2.2.2] octane (DABCO) suggested that tripiet state of oligophenylenevinylenes(OPVs) directly takes part in their photooxidative degradation instead of just generating singlet oxygen.
基金supported by the Research Project for Outstanding Young People in Universities of Anhui Province(No.2023AH030099)the China Postdoctoral Science Foundation(No.2023M733378)+3 种基金the National Natural Science Foundation of China(No.21702042,No.22305059,No.22103010)the National University Students'Innovation and Entrepreneurship Training Program(No.202311059024)the Anhui Provincial Natural Science Foundation(No.2308085QB59)the Anhui Provincial Excellent Scientific Research and Innovation Team(No.2022AH010096).
文摘In this study,diodo boron dipyrromethene(BODIPY)is employed a8 the energy donor and 3,4,9,10-perylene tetracarboxylic dianhydride(PDA)as the energy acceptor,enabling the synthesis of two new compounds:a BODIPY-perylene dyad named P1,and a triad named P2.To investigate the impact of the energy donor on the photophysical processes of the system,P1 comprises one diodo-BODIPY unit and one PDA unit,whereas P2 contains two diodo-BODIPY moieties and one PDA unit.Due to the good spectral complementarity between diiodo-BODIPY and PDA,these two compounds exhibit excellent light-harvesting capabilities in the 400-620 nm range.Steady-state fluorescence spectra demonstrate that when preferentially exciting the diodo-BODIPY moiety,it can effectively transfer energy to PDA;when selectively exciting the PDA moiety,quenching of PDA fluorescence is observed in both P1 and P2.Nanosecond transient absorption results show that both compounds can efficiently generate triplet excited states,which are located on the PDA part.The lifetimes of the triplet states for these two compounds are 103 and 89μs,respectively,significantly longer than that of diiodo-BODIPY.The results from the photooxidation experiments reveal that both P1 and P2 demonstrate good photostability and photooxidation capabilities,with P2 showing superior photooxidative efficiency.The photooxidation rate constant for P2 is 1.3 times that of P1,and its singlet oxygen quantum yield is 1.6 times that of P1.The results obtained here offer valuable insights for designing new photosensitizers.
文摘Into the photooxidation process, several factors such as pH, time of irradiation, dose of UV light, lamp power, contaminant concentration, turbidity of the solution and the presence of salts can interfere with the photodegradation of pollutants. This research aims to evaluate the influence of salts: NaCl, MgCl2, CaCI2, BaC12, CuCl2, Na2SO4, MgSO4, MnSO4, FeSO4, CuSO4, Na3PO4, K2CrO4 and K2Cr207 in concentrations of 0.0005 M, 0.005 M and 0.05 M during photodegradation of aqueous solution of 59.5 mg/L of nitrobenzene at a pH of 2.5. It was observed that the presence of salts such as CuCI2, CuSO4, FeSO4, K2CrO4 and K2Cr207 interfere negatively in the system UV/H202 applied for degradation of nitrobenzene; possibly by oxidation of Fe2+ to Fe3+ and Cu+ to Cu2+ in the Cr case, due to the difficulty of transforming the Cr6+ to Cr3+ or because these solutions have color and act as radiation absorbing filter.
文摘This study was intended to determine the effectiveness of ascorbic acid microemulsion for inhibiting photooxidation of virgin coconut oil (VCO). The ascorbic acid microemulsion was prepared by mixing ascorbic acid, deionized water, surfactant mixture, and VCO as continuous phase. Ascorbic acid microemulsion at 50, 100, 150, 200, or 250 ppm was dispersed into VCO. The same level of ascorbyl palmitate, TBHQ (tertiary butylhydroquinone), and BHA (butylated hidroxyanisole) were added into VCO and used for comparison. All of these samples were subsequently subjected to photooxidation under fluorescent light exposure (4,000 lux) for up to 8 hours at room temperature (30 ~ 1 ~C). Peroxide values and p-anisidine values of photooxidized samples were measured at 1 hour interval. The result indicated that at the level of 250 ppm, ascorbic acid which was included into the microemulsion system effectively inhibited photooxidation of VCO in comparison with the other antioxidants. This study confirmed that a highly hydrophilic singlet oxygen quencher (SOQ) such as ascorbic acid can be successfully incorporated into the microemulsion system and the addition of ascorbic acid microemulsion effectively inhibited photooxidation of VCO during storage under fluorescent light.