Phthalocyanines-related compounds, subphthalocyanines, are the homologues consisting of three isoindole units with boron as the center. The absorption maximum of subphthalocyanines, called the Q band, appears around 5...Phthalocyanines-related compounds, subphthalocyanines, are the homologues consisting of three isoindole units with boron as the center. The absorption maximum of subphthalocyanines, called the Q band, appears around 560 - 630 nm, which is shifted by approximately 100 nm to shorter wavelengths compared to phthalocyanines. Subphthalocyanines are used as precursors to prepare unsymmetric phthalocyanines for ring enlargement reaction. In this decade, phthalocyanines are used for dye-sensitized solar cells (DSSCs), which require strong absorption of far-red light between 700 and 850 nm because of their highly efficiency. Non-peripheral thioaryl-substituted phthalocyanines have been synthesized. They show near-infrared absorption around 780 - 870 nm and have excellent electron transfer properties. However, their lack of affinity to basal plats inhibits their use as DSSC photosensitizer. Therefore, to synthesize unsymmetrical non-peripheral thioaryl-substituted phthalocyanines possessing good affinity to basal plates, the authors prepared subphthalocyanines having thioaryl substituents as precursors. Spectroscopic properties and electron transfer abilities to synthesize non-peripheral thioaryl-substituted subphthalocyanines were estimated using cyclic voltammetry. The Q band of non-peripheral thioaryl-substituted subphthalocyanines shows around 650 nm shifted to longer wavelength by 86 nm in comparison to subphthalocyanine. The compounds show many reduction potentials. They are acceptable electrons in the subphthalocyanine ring, meaning that the compounds have good electron transfer properties.展开更多
The TiO_(2) with nanoparticles(NPs),nanowires(NWs),nanorods(NRs)and nanotubes(NTs)structures were prepared by using a in-situ hydrothermal technique,and then proposed as a photoanode for flexible dye-sensitized solar ...The TiO_(2) with nanoparticles(NPs),nanowires(NWs),nanorods(NRs)and nanotubes(NTs)structures were prepared by using a in-situ hydrothermal technique,and then proposed as a photoanode for flexible dye-sensitized solar cell(FDSSC).The influences of the morphology of TiO_(2) on the photovoltaic performances of FDSSCs were investigated.Under rear illumination of 100 mW·cm^(−2),the power conversion efficiencies of FDSSCs achieved 6.96%,7.36%,7.65%,and 7.83%with the TiO_(2) photoanodes of NPs,NWs,NRs,and NTs and PEDOT counter electrode.The FDSSCs based on TiO_(2) NRs and NTs photoanodes have higher short circuit current densities and power conversion efficiencies than that of the others.The enhanced power conversion efficiency is responsible for their nanotubes and rod-shaped ordered structures,which are more beneficial to transmission of electron and hole in semiconductor compared to the TiO_(2) nanoparticles and nanowires disordered structure.展开更多
The efficient photo-response mechanism is one of the key factors in the commercialization of dye-sensitized solar cells in a bid to satisfy renewable energy demands. Progress in green technology has put solar energy o...The efficient photo-response mechanism is one of the key factors in the commercialization of dye-sensitized solar cells in a bid to satisfy renewable energy demands. Progress in green technology has put solar energy on the front burner as a provider of clean and affordable energy for a sustainable society. We report the synthesis of a novel Schiff base with optical transparency in the visible and near IR region of the solar spectrum that can find application in the DSSCs photo-response mechanism. The synthesized crystal exhibited features that could handle some of the shortcomings of dye-sensitized solar cells which include wide band solar spectrum absorption and capability for swift charge transfer within the photoelectrodes. The synthesized Schiff base was characterized using x-ray diffractometer, UV/Visible spectrometer, Frontier transmission infrared spectrometer and conductometer. XRD data revealed the grown crystal to have an average crystallite size of 2.08 nm with average microstrain value of about 269.43. The FT-IR recorded transmission wave ѵ (CO) at 1207.7 cm<sup>−1</sup> while dominant wave occurred at ѵ1654.9 and ѵ1592.3 cm<sup>−1</sup> relating to ѵ (CN) stretching and ѵ (NH) bending respectively were observed. The IR spectrum revealed the bonding species and a probable molecular structure of 2,6-bis(benzyloxy)pyridine. The UV/Visible spectra convoluted to maximum peak within the near IR region suggesting that 2,6-bis(benzyloxy)pyridine can absorb both the visible and near IR region while its electrical conductivity was determined to be 4.58 µS/cm. The obtained result of the present study revealed promising characteristics of a photosensitizer that can find application in the photo-response mechanism of DSSCs.展开更多
Two organic dyes XSS1 and XS52 derivated from triarylamine and indoline are synthesized for dye-sensitized solar ceils (DSCs) employing cobalt and iodine redox shuttles. The effects of dye structure upon the photoph...Two organic dyes XSS1 and XS52 derivated from triarylamine and indoline are synthesized for dye-sensitized solar ceils (DSCs) employing cobalt and iodine redox shuttles. The effects of dye structure upon the photophysical, electro-chemical characteristics and cell perfor- mance are investigated. XS51 with four hexyloxyl groups on triarylamine performs better steric hindrance and an improvement of photovoltage. X852 provides higher short-circuit photocurrent density due to the strong electron-donating capability of indoline unit. The results from the redox electrolyte on cell performances indicate that the synthesized dyes are more suitable for tris(1,10-phenanthroline)cobalt(II/III) redox couple than I-/I3- redox couple in assembling DSCs. Application of X852 in the cobalt electrolyte yields a DSC with an overall power conversion efficiency of 6.58% under AM 1.5 (100 mW/cm2) irradiation.展开更多
Titanium tetrachloride (TiCl4) treatment was employed to TiO2 coating deposited on fluoride-doped tin oxide (FTO) conducting glass and indium oxide doped tin oxide (ITO) conducting glass, respectively. The nano-crysta...Titanium tetrachloride (TiCl4) treatment was employed to TiO2 coating deposited on fluoride-doped tin oxide (FTO) conducting glass and indium oxide doped tin oxide (ITO) conducting glass, respectively. The nano-crystalline TiO2 coating was deposited using a composite powder composed of polyethylene glycol (PEG) and 25 nm TiO2 particles by vacuum cold spraying (VCS) process. A commercial N-719 dye was used to adsorb on the surface of TiO2 coating to prepare TiO2 electrode, which was applied to assemble dye-sensitized solar cell (DSC). The cell performance was measured under simulated solar light at an intensity of 100 mW·cm-2. Results show that with an FTO substrate the DSC composed of a VCS TiO2 electrode untreated by TiCl4 gives a short-circuit current density of 13.1 mA·cm-2 and an open circuit voltage of 0.60 V corresponding to an overall conversion efficiency of 4.4%. It is found that after TiCl4 treatment to the VCS TiO2 electrode with an FTO substrate, the short circuit current density of the cell increases by 31%, the open-circuit voltage increases by 60 mV and a higher conversion yield of 6.5% was obtained. However, when an ITO substrate is used to deposit TiO2 coating by VCS, after TiCl4 treatment, the conversion efficiency of the assembled cell reduces slightly due to corrosion of the conducting layer on the ITO glass by TiCl4.展开更多
A flexible counter electrode(CE) for dye-sensitized solar cells(DSCs) has been fabricated using a micro-porous polyvinylidene fluoride membrane as support media and sputtered Pt as the catalytic material.Non-conventio...A flexible counter electrode(CE) for dye-sensitized solar cells(DSCs) has been fabricated using a micro-porous polyvinylidene fluoride membrane as support media and sputtered Pt as the catalytic material.Non-conventional structure DSCs have been developed by the fabricated CEs. The Pt metal was sputtered onto one surface of the membrane as the catalytic material. DSCs were assembled by attaching the Ti O2 electrode to the membrane surface without Pt coating. The membrane was with cylindrical pore geometry. It served not only as a substrate for the CE but also as a spacer for the DSC. The fabricated DSC with the flexible membrane CE showed higher photocurrent density than the conventional sandwich devices based on chemically deposited Pt/FTO glass, achieving a photovoltaic conversion efficiency of 4.43%. The results provides useful information in investigation and development of stable, low-cost, simple-design, flexible and lightweight DSCs.展开更多
Photocatalytic oxidation desulfurization has become a research hotspot in recent years because of mild reaction conditions, less energy consumption and high selectivity. In this paper, TiO2 was loaded onto SBA-15 mole...Photocatalytic oxidation desulfurization has become a research hotspot in recent years because of mild reaction conditions, less energy consumption and high selectivity. In this paper, TiO2 was loaded onto SBA-15 molecular sieves and sensitized with organic dyes(2, 9-dichloroquinacridone, DCQ) to extend its spectral response range from ultraviolet light to visible light. The catalyst DCQ-X%TiO2@SBA-15 was characterized by BET measurements, X-ray diffraction, Fourier transform infrared spectroscopy and Ultraviolet-visible diffuse reflection spectra, and then it was applied for photocatalytic oxidation desulfurization of gasoline. The effects of different catalytic systems, TiO2 concentration, catalyst dosage, and different model sulfur compounds on catalytic desulfurization performance were investigated. Experimental results show that DCQ-TiO2@SBA-15 has a better performance than the unsensitized TiO2@SBA-15, and the desulfurization rate can reach up to 96.1% in a reaction time of 90 min.展开更多
The micro-ring like structured zinc oxide(ZnO) film was deposited on SnO_2: F coated glass substrate by sol-gel dip-coating technique with 1.0 g polyethylene glycol(PEG) content. The surface morphology of micro-ring s...The micro-ring like structured zinc oxide(ZnO) film was deposited on SnO_2: F coated glass substrate by sol-gel dip-coating technique with 1.0 g polyethylene glycol(PEG) content. The surface morphology of micro-ring structured ZnO film has been confirmed by the scanning electron microscope. This ZnO film is used to fabricate the solar cell with the help of ruthenium based dye and carbon counter electrode. The photoelectric and incident photon-to-current conversion efficiency was 1.17% and 48.4%, respectively. The DSC results have been compared with ZnO films prepared without PEG contents.展开更多
Dye-sensitized solar cell (DSC) consists a combination of several different materials: photoanodes with nanoparticulated semiconductors, sensitizers, electrolytes and counter electrodes (CEs). Each materials perf...Dye-sensitized solar cell (DSC) consists a combination of several different materials: photoanodes with nanoparticulated semiconductors, sensitizers, electrolytes and counter electrodes (CEs). Each materials performs specific task for the conversion of solar energy into electricity. The main function of CE is to transfer electrons to the redox electrolyte and regenerate iodide ion. The work of CE is mainly focused on the studies of the kinetic performance and stability of the traditional CEs to improve the overall efficiency of DSC, seeking novel design concepts or new materials. In this review, the development and research progress of different CE materials and their electrochemical performance, and the problems are discussed.展开更多
The ZnO-modified TiO2 electrode was prepared by adding Zn(CH3COO)2·2H2O to the TiO2 colloid during the sol-gel production process, and was used in dye-sensitized solar cells (DSCs). The open circuit voltage ...The ZnO-modified TiO2 electrode was prepared by adding Zn(CH3COO)2·2H2O to the TiO2 colloid during the sol-gel production process, and was used in dye-sensitized solar cells (DSCs). The open circuit voltage (Voc) and fill factor (if) of the cells were improved sig- nificantly. The performances of the ZnO-modified TiO2 electrode such as dark current, transient photocurrent, impedance, absorption spectra, and fiat band potential (Vfb) were investigated. It is found that the interface charge recombination impedance increases and Vfb shifts about 200 mV toward the cathodic potential. The effect mechanism of ZnO modification on the performance of DSCs may be that ZnO occupies the surface states of the TiO2 film.展开更多
Development of cost-effective and robust counter electrodes(CEs) is a persistent objective for highefficiency dye-sensitized solar cells(DSSCs). To achieve this goal, we present here the hydrothermal synthesis of well...Development of cost-effective and robust counter electrodes(CEs) is a persistent objective for highefficiency dye-sensitized solar cells(DSSCs). To achieve this goal, we present here the hydrothermal synthesis of well-aligned Ni Pt alloy CEs, which is templated by ZnO nanowires and nanosheets. The preliminary results demonstrate that Ni Pt alloy electrodes are featured by increased charge-transfer processes and electrocatalytic activity in comparison with expensive Pt CE, yielding power conversion efficiencies of 8.29% and 7.41% in corresponding DSSCs with Ni Pt nanowire and nanosheet alloy CEs, respectively. Additionally, the Ni Pt alloy CEs also display extraordinary dissolution-resistant ability when suffering longterm utilization in liquid-junction DSSCs.展开更多
The exploration of polymer electrolyte in the field of dye sensitized solar cell(DSSC) can contribute to increase the invention of renewable energy applications. In the present work, the influence of imidazole on the ...The exploration of polymer electrolyte in the field of dye sensitized solar cell(DSSC) can contribute to increase the invention of renewable energy applications. In the present work, the influence of imidazole on the poly(vinylidene fluoride)(PVDF)–poly(methyl methacrylate)(PMMA)–Ethylene carbonate(EC)–KI–I2 polymer blend electrolytes has been evaluated. The different weight percentages of imidazole added into polymer blend electrolytes have been prepared by solution casting. The prepared films were characterized by Fourier transform infrared spectroscopy(FTIR), X-ray diffraction(XRD), thermogravimetric analysis(TGA), UV–visible spectra, photoluminescence spectra and impedance spectroscopy. The surface roughness texture of the film was analyzed by atomic force microscopy(AFM). The ionic conductivity of the optimized polymer blend electrolyte was determined by impedance measurement, which is 1.95 × 10-3 S·cm-1 at room temperature. The polymer electrolyte containing 40 wt% of imidazole content exhibits the highest photo-conversion efficiency of 3.04%under the illumination of 100 m W·cm-2. Moreover, a considerable enhancement in the stability of the DSSC device was demonstrated.展开更多
A bi-layer photoanode for dye-sensitized solar cell(DSSC) was fabricated, in which TiO_2 hollow spheres(THSs) were designed as a scattering layer and P25/multi-walled carbon nanotubes(MWNTs) as an under-layer. The THS...A bi-layer photoanode for dye-sensitized solar cell(DSSC) was fabricated, in which TiO_2 hollow spheres(THSs) were designed as a scattering layer and P25/multi-walled carbon nanotubes(MWNTs) as an under-layer. The THSs were synthesized by a sacrifice template method and showed good light scattering ability as an over-layer of the photoanode. MWNTs were mixed with P25 to form an under-layer of the photoanode to improve the electron transmission ability of the photoanode. The power conversion efficiency of this kind of DSSC with bi-layer was enhanced to 5.13 %,which is 14.25 % higher than that of pure P25 DSSC.Graphical Abstract A bi-layer composite photoanode based on P25/MWNTs-THSs with improved light scattering and electron transmission, which will provide a new insight into fabrication and structure design of highly efficient dyesensitized solar cells.展开更多
The electroactive materials used in the counter electrode(CE)are of great concern as they influence the photovoltaic performances of dye-sensitized solar cells.The main functions of CE materials are collecting electro...The electroactive materials used in the counter electrode(CE)are of great concern as they influence the photovoltaic performances of dye-sensitized solar cells.The main functions of CE materials are collecting electrons from the external circuit and transferring them to the electrolyte and realizing the catalytic reduction of the redox species(I3^– or Co^3+)present in the electrolyte.The research hotspot of CE materials is seeking functional materials that display high efficiency,low cost,and good electrochemical stability and can substitute the benchmark platinum electrode.Chalcogen compounds of cobalt,nickel,and iron have been widely applied as CE materials and exhibit excellent electrocatalytic performances owing to their unique electrical properties,similar energies of adsorption of I atoms as platinum,excellent catalytic activities,and good chemical stabilities.In this review,we trace the developments and performances of chalcogen compounds of iron,cobalt,and nickel as CE materials and present the latest research directions for improving the electrocatalytic performances.We then highlight the optimization strategies for further improving their performances,such as fabrication of architectures,regulation of the components,synthesis of composites containing carbon materials,and elemental doping.展开更多
Unique ZnS nanobuns decorated with reduced graphene oxide (ROO) was synthesized and found to exhibit a synergetic effect as a highly efficient and low-cost counter electrode (CE) in dye-sensitized solar cells (D...Unique ZnS nanobuns decorated with reduced graphene oxide (ROO) was synthesized and found to exhibit a synergetic effect as a highly efficient and low-cost counter electrode (CE) in dye-sensitized solar cells (DSCs). Using this ZnS-ROO CE, a power conversion efficiency (PCE) of 7.03% was achieved. This value was 53% and 41 % higher than those of pure ZnS and ROO CEs, respectively. The ZnS-ROO nanocomposite is indeed an efficient and cost-effective Pt-like alternative for iodine reduction reaction.展开更多
New metal-free organic dye sensitizers containing mono-triphenylamine or bis-triphenylamine as the electron donor, a thiophene as the π-conjugated system, and a cyanoacrylic acid moiety as the electron acceptor were ...New metal-free organic dye sensitizers containing mono-triphenylamine or bis-triphenylamine as the electron donor, a thiophene as the π-conjugated system, and a cyanoacrylic acid moiety as the electron acceptor were synthesized. The optical and electrochemical properties of the dyes were investigated,and their performance as sensitizers in solar cells was evaluated. Dye-sensitized solar cells based on dye containing bis-triphenylamine as the electron donor produced a photon-to-current conversion efficiency of 6.06%(Jsc = 14.21 m A/cm;, Voc = 0.62 V, ff = 0.69) under 100 m W/cm;simulated AM 1.5 G solar irradiation(100 m W/cm;).展开更多
Tungsten doped(W-doped) TiO_2 mesoporous nanobeads, possessing high surface area and superior scattering effect, were used for photoanode preparation. The W-doping would induce a positive shift of the TiO_2 conduction...Tungsten doped(W-doped) TiO_2 mesoporous nanobeads, possessing high surface area and superior scattering effect, were used for photoanode preparation. The W-doping would induce a positive shift of the TiO_2 conduction band, and enhance the driving force for electron injection and collection efficiencies. The electrochemical impedance spectra indicated a retarded charge recombination and increased electron diffusion length after W-doping. By fine-tuning the W-doping concentration to 0.25%, aqueous DSCs produced a significant improved the open circuit voltage of 712 mV and a short circuit current of 7.05 mA·cm^(-2), leading to an overall increased power conversion efficiency of 3.40% at 1 000 W·m^(-2) simulated irradiation, which is roughly 25% enhancement compared to that without W-doping photoanode.展开更多
The photosensitive initiating system composed of 7-diethylamino-3-(2'-benzimidazolyl)coumarin dye (DEDC) and diphenyliodonium hexafluorophosphate (DIHP) which act as the sensitizer and the initiator respectively, ...The photosensitive initiating system composed of 7-diethylamino-3-(2'-benzimidazolyl)coumarin dye (DEDC) and diphenyliodonium hexafluorophosphate (DIHP) which act as the sensitizer and the initiator respectively, can be used to initiate the polymerization of methyl methacrylate (MMA). The results showed that when exposed to visible light, coumarin dye/iodonium salt undergoes quick electron transfer from DEDC to DIHP and free radicals are produced. The visible light photoinduced reaction between DEDC and DIHP is mainly through the excited singlet state of DEDC and thus it is a little sensitive to O-2. The influence of concentration of DEDC, DIHP and MMA on the rate of photopolymerization of MMA was also investigated.展开更多
In order to develop a new strategy to deposit nano-particle sized water oxidation catalyst based on earth abundant element to the photoanode in a photoelectrochemical cell for water splitting, Co;O;as water oxidation ...In order to develop a new strategy to deposit nano-particle sized water oxidation catalyst based on earth abundant element to the photoanode in a photoelectrochemical cell for water splitting, Co;O;as water oxidation catalyst was prepared and subsequently modified by 3-aminopropyltriethoxysilane. The amino functionalized Co;O;catalyst was carefully characterized and then integrated to the ruthenium dye sensitized photoelectrode through fast Schiff base reaction. Cyclic voltammetry experiments in the dark confirmed that the modified Co;O;catalyst was still active toward water oxidation, which could be initiated by oxidation of the ruthenium photosensitizer. Under visible light irradiation, incorporation of the modified Co;O;catalyst resulted in dramatic enhancement of the transient photocurrent density for the photoanode, which was 8 times higher than that of without Co;O;catalyst.展开更多
Herein,we examine the performance of dye-sensitized solar cells containing five D-π-A organic dyes designed by systematic modification of π-bridge size and geometric structure.Each dye has a simple push-pull structu...Herein,we examine the performance of dye-sensitized solar cells containing five D-π-A organic dyes designed by systematic modification of π-bridge size and geometric structure.Each dye has a simple push-pull structure with a triarylamino group as an electron donor,bithiophene-4,4-dimethyl-4 H-cyclopenta 1,2-b:5,4-b’]dithiophene(M11),4,4-dimethyl-4 H-cyclopenta[1,2-b:5,4-b’]dithiophenethiophene(M12),thiophene-4,4-dimethyl-4 H-cyclopenta[1,2-b:5,4-b’]dithiophene(M13),4,4-dimethyl-4 H-cyclopenta[1,2-b:5,4-b’]dithiophene-benzene(M14),and 4,4-dimethyl-4 H-cyclopenta[1,2-b:5,4-b’]dithiophene(M15)units asπ-bridges,and cyanoacrylic acid as an electron acceptor/anchor.The extension of theπ-bridge linkage favors wide-range absorption but,because of the concomitant molecular volume increase,hinders the efficient adsorption of dyes on the TiO_(2) film surface.Hence,higher loadings are achieved for smaller dye molecules,resulting in(i)a shift of the TiO_(2) conduction band edge to more negative values,(ii)a greater photocurrent,and(iii)suppressed charge recombination between the photoanode and the redox couple in the electrolyte.Consequently,under one-sun equivalent illumination(AM 1.5 G,100 mW/cm^(2)),the highest photovoltage,photocurrent,and conversion efficiency(η=7.19%)are observed for M15,which has the smallest molecular volume among M series dyes.展开更多
文摘Phthalocyanines-related compounds, subphthalocyanines, are the homologues consisting of three isoindole units with boron as the center. The absorption maximum of subphthalocyanines, called the Q band, appears around 560 - 630 nm, which is shifted by approximately 100 nm to shorter wavelengths compared to phthalocyanines. Subphthalocyanines are used as precursors to prepare unsymmetric phthalocyanines for ring enlargement reaction. In this decade, phthalocyanines are used for dye-sensitized solar cells (DSSCs), which require strong absorption of far-red light between 700 and 850 nm because of their highly efficiency. Non-peripheral thioaryl-substituted phthalocyanines have been synthesized. They show near-infrared absorption around 780 - 870 nm and have excellent electron transfer properties. However, their lack of affinity to basal plats inhibits their use as DSSC photosensitizer. Therefore, to synthesize unsymmetrical non-peripheral thioaryl-substituted phthalocyanines possessing good affinity to basal plates, the authors prepared subphthalocyanines having thioaryl substituents as precursors. Spectroscopic properties and electron transfer abilities to synthesize non-peripheral thioaryl-substituted subphthalocyanines were estimated using cyclic voltammetry. The Q band of non-peripheral thioaryl-substituted subphthalocyanines shows around 650 nm shifted to longer wavelength by 86 nm in comparison to subphthalocyanine. The compounds show many reduction potentials. They are acceptable electrons in the subphthalocyanine ring, meaning that the compounds have good electron transfer properties.
基金The authors are very grateful to the joint support by NSFC(No.61704047)This work is also supported by Science and Technology Development Project of Henan Province(Nos.212102210126 and 202300410057).
文摘The TiO_(2) with nanoparticles(NPs),nanowires(NWs),nanorods(NRs)and nanotubes(NTs)structures were prepared by using a in-situ hydrothermal technique,and then proposed as a photoanode for flexible dye-sensitized solar cell(FDSSC).The influences of the morphology of TiO_(2) on the photovoltaic performances of FDSSCs were investigated.Under rear illumination of 100 mW·cm^(−2),the power conversion efficiencies of FDSSCs achieved 6.96%,7.36%,7.65%,and 7.83%with the TiO_(2) photoanodes of NPs,NWs,NRs,and NTs and PEDOT counter electrode.The FDSSCs based on TiO_(2) NRs and NTs photoanodes have higher short circuit current densities and power conversion efficiencies than that of the others.The enhanced power conversion efficiency is responsible for their nanotubes and rod-shaped ordered structures,which are more beneficial to transmission of electron and hole in semiconductor compared to the TiO_(2) nanoparticles and nanowires disordered structure.
文摘The efficient photo-response mechanism is one of the key factors in the commercialization of dye-sensitized solar cells in a bid to satisfy renewable energy demands. Progress in green technology has put solar energy on the front burner as a provider of clean and affordable energy for a sustainable society. We report the synthesis of a novel Schiff base with optical transparency in the visible and near IR region of the solar spectrum that can find application in the DSSCs photo-response mechanism. The synthesized crystal exhibited features that could handle some of the shortcomings of dye-sensitized solar cells which include wide band solar spectrum absorption and capability for swift charge transfer within the photoelectrodes. The synthesized Schiff base was characterized using x-ray diffractometer, UV/Visible spectrometer, Frontier transmission infrared spectrometer and conductometer. XRD data revealed the grown crystal to have an average crystallite size of 2.08 nm with average microstrain value of about 269.43. The FT-IR recorded transmission wave ѵ (CO) at 1207.7 cm<sup>−1</sup> while dominant wave occurred at ѵ1654.9 and ѵ1592.3 cm<sup>−1</sup> relating to ѵ (CN) stretching and ѵ (NH) bending respectively were observed. The IR spectrum revealed the bonding species and a probable molecular structure of 2,6-bis(benzyloxy)pyridine. The UV/Visible spectra convoluted to maximum peak within the near IR region suggesting that 2,6-bis(benzyloxy)pyridine can absorb both the visible and near IR region while its electrical conductivity was determined to be 4.58 µS/cm. The obtained result of the present study revealed promising characteristics of a photosensitizer that can find application in the photo-response mechanism of DSSCs.
文摘Two organic dyes XSS1 and XS52 derivated from triarylamine and indoline are synthesized for dye-sensitized solar ceils (DSCs) employing cobalt and iodine redox shuttles. The effects of dye structure upon the photophysical, electro-chemical characteristics and cell perfor- mance are investigated. XS51 with four hexyloxyl groups on triarylamine performs better steric hindrance and an improvement of photovoltage. X852 provides higher short-circuit photocurrent density due to the strong electron-donating capability of indoline unit. The results from the redox electrolyte on cell performances indicate that the synthesized dyes are more suitable for tris(1,10-phenanthroline)cobalt(II/III) redox couple than I-/I3- redox couple in assembling DSCs. Application of X852 in the cobalt electrolyte yields a DSC with an overall power conversion efficiency of 6.58% under AM 1.5 (100 mW/cm2) irradiation.
文摘Titanium tetrachloride (TiCl4) treatment was employed to TiO2 coating deposited on fluoride-doped tin oxide (FTO) conducting glass and indium oxide doped tin oxide (ITO) conducting glass, respectively. The nano-crystalline TiO2 coating was deposited using a composite powder composed of polyethylene glycol (PEG) and 25 nm TiO2 particles by vacuum cold spraying (VCS) process. A commercial N-719 dye was used to adsorb on the surface of TiO2 coating to prepare TiO2 electrode, which was applied to assemble dye-sensitized solar cell (DSC). The cell performance was measured under simulated solar light at an intensity of 100 mW·cm-2. Results show that with an FTO substrate the DSC composed of a VCS TiO2 electrode untreated by TiCl4 gives a short-circuit current density of 13.1 mA·cm-2 and an open circuit voltage of 0.60 V corresponding to an overall conversion efficiency of 4.4%. It is found that after TiCl4 treatment to the VCS TiO2 electrode with an FTO substrate, the short circuit current density of the cell increases by 31%, the open-circuit voltage increases by 60 mV and a higher conversion yield of 6.5% was obtained. However, when an ITO substrate is used to deposit TiO2 coating by VCS, after TiCl4 treatment, the conversion efficiency of the assembled cell reduces slightly due to corrosion of the conducting layer on the ITO glass by TiCl4.
基金supported by National Natural Science Foundation of China(No.10774046)Shanghai Municipal Science&Technology Committee(No.09JC1404600+1 种基金No.0852nm06100 and No.08230705400)Singapore Ministry of Education innovation fund(MOE IF Funding MOE2008-IF-1-016)
文摘A flexible counter electrode(CE) for dye-sensitized solar cells(DSCs) has been fabricated using a micro-porous polyvinylidene fluoride membrane as support media and sputtered Pt as the catalytic material.Non-conventional structure DSCs have been developed by the fabricated CEs. The Pt metal was sputtered onto one surface of the membrane as the catalytic material. DSCs were assembled by attaching the Ti O2 electrode to the membrane surface without Pt coating. The membrane was with cylindrical pore geometry. It served not only as a substrate for the CE but also as a spacer for the DSC. The fabricated DSC with the flexible membrane CE showed higher photocurrent density than the conventional sandwich devices based on chemically deposited Pt/FTO glass, achieving a photovoltaic conversion efficiency of 4.43%. The results provides useful information in investigation and development of stable, low-cost, simple-design, flexible and lightweight DSCs.
基金This research was funded by National Natural Science Foundation of China (Grant No. 21676099)the Fundamental Research Funds for the Central Universities, South China University of Technology
文摘Photocatalytic oxidation desulfurization has become a research hotspot in recent years because of mild reaction conditions, less energy consumption and high selectivity. In this paper, TiO2 was loaded onto SBA-15 molecular sieves and sensitized with organic dyes(2, 9-dichloroquinacridone, DCQ) to extend its spectral response range from ultraviolet light to visible light. The catalyst DCQ-X%TiO2@SBA-15 was characterized by BET measurements, X-ray diffraction, Fourier transform infrared spectroscopy and Ultraviolet-visible diffuse reflection spectra, and then it was applied for photocatalytic oxidation desulfurization of gasoline. The effects of different catalytic systems, TiO2 concentration, catalyst dosage, and different model sulfur compounds on catalytic desulfurization performance were investigated. Experimental results show that DCQ-TiO2@SBA-15 has a better performance than the unsensitized TiO2@SBA-15, and the desulfurization rate can reach up to 96.1% in a reaction time of 90 min.
基金the Ministry of EducationCulture,Sports,Science and Technology,Japan for financial support
文摘The micro-ring like structured zinc oxide(ZnO) film was deposited on SnO_2: F coated glass substrate by sol-gel dip-coating technique with 1.0 g polyethylene glycol(PEG) content. The surface morphology of micro-ring structured ZnO film has been confirmed by the scanning electron microscope. This ZnO film is used to fabricate the solar cell with the help of ruthenium based dye and carbon counter electrode. The photoelectric and incident photon-to-current conversion efficiency was 1.17% and 48.4%, respectively. The DSC results have been compared with ZnO films prepared without PEG contents.
基金the support of the National Natural Science Foundation of China under grant No. 20673141 the National Basic Research Program of China (973 Program) under grant No. 2006CB202606 the National High Technology Research and Development Program (863 Program) under grant No. 2006AA03Z341 and the 100-Talents Project of Chinese Academy of Sciences.
文摘Dye-sensitized solar cell (DSC) consists a combination of several different materials: photoanodes with nanoparticulated semiconductors, sensitizers, electrolytes and counter electrodes (CEs). Each materials performs specific task for the conversion of solar energy into electricity. The main function of CE is to transfer electrons to the redox electrolyte and regenerate iodide ion. The work of CE is mainly focused on the studies of the kinetic performance and stability of the traditional CEs to improve the overall efficiency of DSC, seeking novel design concepts or new materials. In this review, the development and research progress of different CE materials and their electrochemical performance, and the problems are discussed.
基金supported by the Major State Basic Research Development Program of China (No.2006CB202605)the National Natural Science Foundation of China (No.50473055)
文摘The ZnO-modified TiO2 electrode was prepared by adding Zn(CH3COO)2·2H2O to the TiO2 colloid during the sol-gel production process, and was used in dye-sensitized solar cells (DSCs). The open circuit voltage (Voc) and fill factor (if) of the cells were improved sig- nificantly. The performances of the ZnO-modified TiO2 electrode such as dark current, transient photocurrent, impedance, absorption spectra, and fiat band potential (Vfb) were investigated. It is found that the interface charge recombination impedance increases and Vfb shifts about 200 mV toward the cathodic potential. The effect mechanism of ZnO modification on the performance of DSCs may be that ZnO occupies the surface states of the TiO2 film.
基金financial supports from the National Natural Science Foundation of China(21503202,61604143,51362031)Shandong Provincial Natural Science Foundation(JQ201714)and Fundamental Research Funds for the Central Universities(201762018)
文摘Development of cost-effective and robust counter electrodes(CEs) is a persistent objective for highefficiency dye-sensitized solar cells(DSSCs). To achieve this goal, we present here the hydrothermal synthesis of well-aligned Ni Pt alloy CEs, which is templated by ZnO nanowires and nanosheets. The preliminary results demonstrate that Ni Pt alloy electrodes are featured by increased charge-transfer processes and electrocatalytic activity in comparison with expensive Pt CE, yielding power conversion efficiencies of 8.29% and 7.41% in corresponding DSSCs with Ni Pt nanowire and nanosheet alloy CEs, respectively. Additionally, the Ni Pt alloy CEs also display extraordinary dissolution-resistant ability when suffering longterm utilization in liquid-junction DSSCs.
基金funded by Deanship of Scientific Research(DSR),King Abdulaziz University,Jeddah,under grant No.(DF-779-130-1441)DSR technical and financial support.
文摘The exploration of polymer electrolyte in the field of dye sensitized solar cell(DSSC) can contribute to increase the invention of renewable energy applications. In the present work, the influence of imidazole on the poly(vinylidene fluoride)(PVDF)–poly(methyl methacrylate)(PMMA)–Ethylene carbonate(EC)–KI–I2 polymer blend electrolytes has been evaluated. The different weight percentages of imidazole added into polymer blend electrolytes have been prepared by solution casting. The prepared films were characterized by Fourier transform infrared spectroscopy(FTIR), X-ray diffraction(XRD), thermogravimetric analysis(TGA), UV–visible spectra, photoluminescence spectra and impedance spectroscopy. The surface roughness texture of the film was analyzed by atomic force microscopy(AFM). The ionic conductivity of the optimized polymer blend electrolyte was determined by impedance measurement, which is 1.95 × 10-3 S·cm-1 at room temperature. The polymer electrolyte containing 40 wt% of imidazole content exhibits the highest photo-conversion efficiency of 3.04%under the illumination of 100 m W·cm-2. Moreover, a considerable enhancement in the stability of the DSSC device was demonstrated.
基金the support provided by the National High Technology Research and Development Program 863 (No.2006AA05Z417)Science and Technology Platform Construction Project of Dalian (2010-354)+4 种基金the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning (No.2013-70)‘‘Shu Guang’’ project supported by Shanghai Municipal Education Commission and Shanghai Education Development Foundation (No.13SG55)National Natural Science Foundation of China (NSFC) (No.61376009)Science and Technology Commission of Shanghai Municipality (No.14YF1410500)Shanghai Young Teacher Supporting Foundation (No.ZZEGD14011)
文摘A bi-layer photoanode for dye-sensitized solar cell(DSSC) was fabricated, in which TiO_2 hollow spheres(THSs) were designed as a scattering layer and P25/multi-walled carbon nanotubes(MWNTs) as an under-layer. The THSs were synthesized by a sacrifice template method and showed good light scattering ability as an over-layer of the photoanode. MWNTs were mixed with P25 to form an under-layer of the photoanode to improve the electron transmission ability of the photoanode. The power conversion efficiency of this kind of DSSC with bi-layer was enhanced to 5.13 %,which is 14.25 % higher than that of pure P25 DSSC.Graphical Abstract A bi-layer composite photoanode based on P25/MWNTs-THSs with improved light scattering and electron transmission, which will provide a new insight into fabrication and structure design of highly efficient dyesensitized solar cells.
基金supported by the National Science Fund for Distinguished Young Scholars(21425729)from the National Natural Science Foundation of Chinathe National Special S&T Project on Water Pollution Control and Treatment(2017ZX07107002)+1 种基金China Postdoctoral Science Foundation(2018M640209)the Tianjin Science and Technology Support Key Projects(18YFZCSF00500)~~
文摘The electroactive materials used in the counter electrode(CE)are of great concern as they influence the photovoltaic performances of dye-sensitized solar cells.The main functions of CE materials are collecting electrons from the external circuit and transferring them to the electrolyte and realizing the catalytic reduction of the redox species(I3^– or Co^3+)present in the electrolyte.The research hotspot of CE materials is seeking functional materials that display high efficiency,low cost,and good electrochemical stability and can substitute the benchmark platinum electrode.Chalcogen compounds of cobalt,nickel,and iron have been widely applied as CE materials and exhibit excellent electrocatalytic performances owing to their unique electrical properties,similar energies of adsorption of I atoms as platinum,excellent catalytic activities,and good chemical stabilities.In this review,we trace the developments and performances of chalcogen compounds of iron,cobalt,and nickel as CE materials and present the latest research directions for improving the electrocatalytic performances.We then highlight the optimization strategies for further improving their performances,such as fabrication of architectures,regulation of the components,synthesis of composites containing carbon materials,and elemental doping.
基金supported by the National Natural Science Foundation of China(Grant No.51172102,51302125 and 51303076)
文摘Unique ZnS nanobuns decorated with reduced graphene oxide (ROO) was synthesized and found to exhibit a synergetic effect as a highly efficient and low-cost counter electrode (CE) in dye-sensitized solar cells (DSCs). Using this ZnS-ROO CE, a power conversion efficiency (PCE) of 7.03% was achieved. This value was 53% and 41 % higher than those of pure ZnS and ROO CEs, respectively. The ZnS-ROO nanocomposite is indeed an efficient and cost-effective Pt-like alternative for iodine reduction reaction.
基金supported by the National Natural Science Foundation of China (Nos. 21273026 and 21572028) for their financial supportsupported by the Fundamental Research Funds for the Central Universities (DUT15LK37)the Outstanding Young Scholars Development Growth Plan of universities in Liaoning Province (LJQ2015027)
文摘New metal-free organic dye sensitizers containing mono-triphenylamine or bis-triphenylamine as the electron donor, a thiophene as the π-conjugated system, and a cyanoacrylic acid moiety as the electron acceptor were synthesized. The optical and electrochemical properties of the dyes were investigated,and their performance as sensitizers in solar cells was evaluated. Dye-sensitized solar cells based on dye containing bis-triphenylamine as the electron donor produced a photon-to-current conversion efficiency of 6.06%(Jsc = 14.21 m A/cm;, Voc = 0.62 V, ff = 0.69) under 100 m W/cm;simulated AM 1.5 G solar irradiation(100 m W/cm;).
基金Supported by the National Natural Science Foundation of China(No.51502224)the Fundamental Research Funds for the Central Universities(Wuhan University of Technology,WUT)(No.2015IVA052)+1 种基金Students Innovation and Entrepreneurship Training Program(No.20151049701026)the Natural Science Foundation of Hubei Province in China(No.2016CFB118)
文摘Tungsten doped(W-doped) TiO_2 mesoporous nanobeads, possessing high surface area and superior scattering effect, were used for photoanode preparation. The W-doping would induce a positive shift of the TiO_2 conduction band, and enhance the driving force for electron injection and collection efficiencies. The electrochemical impedance spectra indicated a retarded charge recombination and increased electron diffusion length after W-doping. By fine-tuning the W-doping concentration to 0.25%, aqueous DSCs produced a significant improved the open circuit voltage of 712 mV and a short circuit current of 7.05 mA·cm^(-2), leading to an overall increased power conversion efficiency of 3.40% at 1 000 W·m^(-2) simulated irradiation, which is roughly 25% enhancement compared to that without W-doping photoanode.
基金This work was supported by the National Natural Science Foundation of China (No. 59773011).
文摘The photosensitive initiating system composed of 7-diethylamino-3-(2'-benzimidazolyl)coumarin dye (DEDC) and diphenyliodonium hexafluorophosphate (DIHP) which act as the sensitizer and the initiator respectively, can be used to initiate the polymerization of methyl methacrylate (MMA). The results showed that when exposed to visible light, coumarin dye/iodonium salt undergoes quick electron transfer from DEDC to DIHP and free radicals are produced. The visible light photoinduced reaction between DEDC and DIHP is mainly through the excited singlet state of DEDC and thus it is a little sensitive to O-2. The influence of concentration of DEDC, DIHP and MMA on the rate of photopolymerization of MMA was also investigated.
基金supported by the Program for Innovation Research of Science in Harbin Institute of Technology(PIRS of HIT nos.A201418 and Q201508)
文摘In order to develop a new strategy to deposit nano-particle sized water oxidation catalyst based on earth abundant element to the photoanode in a photoelectrochemical cell for water splitting, Co;O;as water oxidation catalyst was prepared and subsequently modified by 3-aminopropyltriethoxysilane. The amino functionalized Co;O;catalyst was carefully characterized and then integrated to the ruthenium dye sensitized photoelectrode through fast Schiff base reaction. Cyclic voltammetry experiments in the dark confirmed that the modified Co;O;catalyst was still active toward water oxidation, which could be initiated by oxidation of the ruthenium photosensitizer. Under visible light irradiation, incorporation of the modified Co;O;catalyst resulted in dramatic enhancement of the transient photocurrent density for the photoanode, which was 8 times higher than that of without Co;O;catalyst.
基金supported by Basic Science Research through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(No.2017R1D1A1B03035077)also supported by Research Program(2018R1A2B2006708)+1 种基金Technology Development Program to Solve Climate Changes(2015M1A2A2057062)funded by the National Research Foundation under the Ministry of Science and ICT,Republic of Koreasupported by the Defense Challengeable Future Technology Program of the Agency for Defense Development,Republic of Korea。
文摘Herein,we examine the performance of dye-sensitized solar cells containing five D-π-A organic dyes designed by systematic modification of π-bridge size and geometric structure.Each dye has a simple push-pull structure with a triarylamino group as an electron donor,bithiophene-4,4-dimethyl-4 H-cyclopenta 1,2-b:5,4-b’]dithiophene(M11),4,4-dimethyl-4 H-cyclopenta[1,2-b:5,4-b’]dithiophenethiophene(M12),thiophene-4,4-dimethyl-4 H-cyclopenta[1,2-b:5,4-b’]dithiophene(M13),4,4-dimethyl-4 H-cyclopenta[1,2-b:5,4-b’]dithiophene-benzene(M14),and 4,4-dimethyl-4 H-cyclopenta[1,2-b:5,4-b’]dithiophene(M15)units asπ-bridges,and cyanoacrylic acid as an electron acceptor/anchor.The extension of theπ-bridge linkage favors wide-range absorption but,because of the concomitant molecular volume increase,hinders the efficient adsorption of dyes on the TiO_(2) film surface.Hence,higher loadings are achieved for smaller dye molecules,resulting in(i)a shift of the TiO_(2) conduction band edge to more negative values,(ii)a greater photocurrent,and(iii)suppressed charge recombination between the photoanode and the redox couple in the electrolyte.Consequently,under one-sun equivalent illumination(AM 1.5 G,100 mW/cm^(2)),the highest photovoltage,photocurrent,and conversion efficiency(η=7.19%)are observed for M15,which has the smallest molecular volume among M series dyes.