In this paper, we present a mathematical model that describes tumor-normal cells inter- action dynamics focusing on role of drugs in treatment of brain tumors. The goal is to predict distribution and necessary quantit...In this paper, we present a mathematical model that describes tumor-normal cells inter- action dynamics focusing on role of drugs in treatment of brain tumors. The goal is to predict distribution and necessary quantity of drugs delivered in drug-therapy by using optimal control framework. The model describes interactions of tumor and normal cells using a system of reactions^diffusion equations involving the drug concentration, tumor cells and normal tissues. The control estimates simultaneously blood perfusion rate, reabsorption rate of drug and drug dosage administered, which affect the effects of brain tumor chemotherapy. First, we develop mathematical framework which mod- els the competition between tumor and normal cells under chemotherapy constraints. Then, existence, uniqueness and regularity of solution of state equations are proved as well as stability results. Afterwards, optimal control problems are formulated in order to minimize the drug delivery and tumor cell burden in different situations. We show existence and uniqueness of optimal solution, and we derive necessary conditions for optimality. Finally, to solve numerically optimal control and optimization problems, we propose and investigate an adjoint multiple-relaxation-time lattice Boltzmann method for a general nonlinear coupled anisotropic convection-diffusion system (which includes the developed model for brain tumor targeted drug delivery system).展开更多
First, a discrete stage-structured and harvested predator-prey model is established, which is based on a predator-prey model with Type III functional response. Then the~ oretical methods are used to investigate existe...First, a discrete stage-structured and harvested predator-prey model is established, which is based on a predator-prey model with Type III functional response. Then the~ oretical methods are used to investigate existence of equilibria and their local proper- ties. Third, it is shown that the system undergoes flip bifurcation and Neimark-Sacker bifurcation in the interior of R~_, by using the normal form of discrete systems, the center manifold theorem and the bifurcation theory, as varying the model parameters in some range. In particular, the direction and the stability of the flip bifurcation and the Neimark -Sacker bifurcation are showed. Finally, numerical simulations are presented not only to illustrate our results with the theoretical analysis, but also to exhibit the com- plex dynamical behaviors, such as cascades of period-doubling bifurcation and chaotic sets. These results reveal far richer dynamics of the discrete model compared with the continuous model. The Lyapunov exponents are numerically computed to confirm fur- ther the complexity of the dynamical behaviors. In addition, we show also the stabilizing effect of the harvesting by using numerical simulations.展开更多
文摘In this paper, we present a mathematical model that describes tumor-normal cells inter- action dynamics focusing on role of drugs in treatment of brain tumors. The goal is to predict distribution and necessary quantity of drugs delivered in drug-therapy by using optimal control framework. The model describes interactions of tumor and normal cells using a system of reactions^diffusion equations involving the drug concentration, tumor cells and normal tissues. The control estimates simultaneously blood perfusion rate, reabsorption rate of drug and drug dosage administered, which affect the effects of brain tumor chemotherapy. First, we develop mathematical framework which mod- els the competition between tumor and normal cells under chemotherapy constraints. Then, existence, uniqueness and regularity of solution of state equations are proved as well as stability results. Afterwards, optimal control problems are formulated in order to minimize the drug delivery and tumor cell burden in different situations. We show existence and uniqueness of optimal solution, and we derive necessary conditions for optimality. Finally, to solve numerically optimal control and optimization problems, we propose and investigate an adjoint multiple-relaxation-time lattice Boltzmann method for a general nonlinear coupled anisotropic convection-diffusion system (which includes the developed model for brain tumor targeted drug delivery system).
文摘First, a discrete stage-structured and harvested predator-prey model is established, which is based on a predator-prey model with Type III functional response. Then the~ oretical methods are used to investigate existence of equilibria and their local proper- ties. Third, it is shown that the system undergoes flip bifurcation and Neimark-Sacker bifurcation in the interior of R~_, by using the normal form of discrete systems, the center manifold theorem and the bifurcation theory, as varying the model parameters in some range. In particular, the direction and the stability of the flip bifurcation and the Neimark -Sacker bifurcation are showed. Finally, numerical simulations are presented not only to illustrate our results with the theoretical analysis, but also to exhibit the com- plex dynamical behaviors, such as cascades of period-doubling bifurcation and chaotic sets. These results reveal far richer dynamics of the discrete model compared with the continuous model. The Lyapunov exponents are numerically computed to confirm fur- ther the complexity of the dynamical behaviors. In addition, we show also the stabilizing effect of the harvesting by using numerical simulations.