The power grid,as the hub connecting the power supply and consumption sides,plays an important role in achieving carbon neutrality in China.In emerging carbon markets,assessing the investment benefits of power-grid en...The power grid,as the hub connecting the power supply and consumption sides,plays an important role in achieving carbon neutrality in China.In emerging carbon markets,assessing the investment benefits of power-grid enterprises is essential.Thus,studying the impact of the carbon market on the investment and operation of powergrid enterprises is key to ensuring their efficient operation.Notably,few studies have examined the interaction between the carbon and electricity markets using system dynamics models,highlighting a research gap in this area.This study investigates the impact of the carbon market on the investment of power-grid enterprises using a novel evaluation system based on a system dynamics model that considers carbon-emissions from an established carbon-emission accounting model.First,an index system for benefit evaluation was constructed from six aspects:financing ability,economic benefit,reliability,social responsibility,user satisfaction,and carbon-emissions.A system dynamics model was then developed to reflect the causal feedback relationship between the impact of the carbon market on the investment and operation of power-grid enterprises.The simulation results of a provincial power-grid enterprise analyze comprehensive investment evaluation benefits over a 10-year period and the impact of carbon emissions on the investment and operation of power-grid enterprises.This study provides guidelines for the benign development of power-grid enterprises within the context of the carbon market.展开更多
The safety of risers in hang-off states is a vital challenge in offshore oil and gas engineering.A new hang-off system installed on top of risers is proposed for improving the security of risers.This approach leads to...The safety of risers in hang-off states is a vital challenge in offshore oil and gas engineering.A new hang-off system installed on top of risers is proposed for improving the security of risers.This approach leads to a challenging problem:coupling the dynamics of risers with a new hang-off system combined with multiple structures and complex constraints.To accurately analyze the dynamic responses of the coupled system,a coupled dynamic model is established based on the Euler-Bernoulli beam-column theory and penalty function method.A comprehensive analysis method is proposed for coupled dynamic analysis by combining the finite element method and the Newmarkβmethod.An analysis program is also developed in MATLAB for dynamic simulation.The simulation results show that the dynamic performances of the risers at the top part are significantly improved by the new hang-off system,especially the novel design,which includes the centralizer and articulation joint.The bending moment and lateral deformation of the risers at the top part decrease,while the hang-off joint experiences a great bending moment at the bottom of the lateral restraint area which requires particular attention in design and application.The platform navigation speed range under the safety limits of risers expands with the new hang-off system in use.展开更多
A rigorous analytical model is developed for simulating the vibration behaviors of large-diameter openended pipe piles(OEPPs)and surrounding soil undergoing high-strain impact loading.To describe the soil behavior,the...A rigorous analytical model is developed for simulating the vibration behaviors of large-diameter openended pipe piles(OEPPs)and surrounding soil undergoing high-strain impact loading.To describe the soil behavior,the soil along pile shaft is divided into slip and nonslip zones and the base soil is modeled as a fictitious-soil pile(FSP)to account for the wave propagation in the soil.True soil properties are adopted and slippage at the pile-soil interface is considered,allowing realistic representation of largediameter OEPP mechanics.The developed model is validated by comparing with conventional models and finite element method(FEM).It is further used to successfully simulate and interpret the behaviors of a steel OEPP during the offshore field test.It is found that the variation in the vertical vibrations of shaft soil along radial direction is significant for large-diameter OEPPs,and the velocity amplitudes of the internal and external soil attenuate following different patterns.The shaft soil motion may not attenuate with depth due to the soil slippage,while the wave attenuation at base soil indicates an influence depth,with a faster attenuation rate than that in the pile.The findings from the current study should aid in simulating the vibration behaviors of large-diameter OEPP-soil system under high-strain dynamic loading.展开更多
Maintaining the integrity and longevity of structures is essential in many industries,such as aerospace,nuclear,and petroleum.To achieve the cost-effectiveness of large-scale systems in petroleum drilling,a strong emp...Maintaining the integrity and longevity of structures is essential in many industries,such as aerospace,nuclear,and petroleum.To achieve the cost-effectiveness of large-scale systems in petroleum drilling,a strong emphasis on structural durability and monitoring is required.This study focuses on the mechanical vibrations that occur in rotary drilling systems,which have a substantial impact on the structural integrity of drilling equipment.The study specifically investigates axial,torsional,and lateral vibrations,which might lead to negative consequences such as bit-bounce,chaotic whirling,and high-frequency stick-slip.These events not only hinder the efficiency of drilling but also lead to exhaustion and harm to the system’s components since they are difficult to be detected and controlled in real time.The study investigates the dynamic interactions of these vibrations,specifically in their high-frequency modes,usingfield data obtained from measurement while drilling.Thefindings have demonstrated the effect of strong coupling between the high-frequency modes of these vibrations on drilling sys-tem performance.The obtained results highlight the importance of considering the interconnected impacts of these vibrations when designing and implementing robust control systems.Therefore,integrating these compo-nents can increase the durability of drill bits and drill strings,as well as improve the ability to monitor and detect damage.Moreover,by exploiting thesefindings,the assessment of structural resilience in rotary drilling systems can be enhanced.Furthermore,the study demonstrates the capacity of structural health monitoring to improve the quality,dependability,and efficiency of rotary drilling systems in the petroleum industry.展开更多
This study presents results from sentiment analysis of Dynamic message sign (DMS) message content, focusing on messages that include numbers of road fatalities. As a traffic management tool, DMS plays a role in influe...This study presents results from sentiment analysis of Dynamic message sign (DMS) message content, focusing on messages that include numbers of road fatalities. As a traffic management tool, DMS plays a role in influencing driver behavior and assisting transportation agencies in achieving safe and efficient traffic movement. However, the psychological and behavioral effects of displaying fatality numbers on DMS remain poorly understood;hence, it is important to know the potential impacts of displaying such messages. The Iowa Department of Transportation displays the number of fatalities on a first screen, followed by a supplemental message hoping to promote safe driving;an example is “19 TRAFFIC DEATHS THIS YEAR IF YOU HAVE A SUPER BOWL DON’T DRIVE HIGH.” We employ natural language processing to decode the sentiment and undertone of the supplementary message and investigate how they influence driving speeds. According to the results of a mixed effect model, drivers reduced speeds marginally upon encountering DMS fatality text with a positive sentiment with a neutral undertone. This category had the largest associated amount of speed reduction, while messages with negative sentiment with a negative undertone had the second largest amount of speed reduction, greater than other combinations, including positive sentiment with a positive undertone.展开更多
This paper reviews works on the dynamic analysis of flexible and rigid pavements under moving vehicles on the basis of continuum-based plane strain models and linear theories.The purpose of this review is to provide i...This paper reviews works on the dynamic analysis of flexible and rigid pavements under moving vehicles on the basis of continuum-based plane strain models and linear theories.The purpose of this review is to provide in-formation about the existing works on the subject,critically discuss them and make suggestions for further research.The reviewed papers are presented on the basis of the various models for pavement-vehicle systems and the various methods for dynamically analyzing these systems.Flexible pavements are modeled by a homogeneous or layered half-plane with isotropic or anisotropic and linear elastic,viscoelastic or poroelastic material behavior.Rigid pavements are modeled by a beam or plate on a homogeneous or layered half-plane with material properties like the ones for flexible pavements.The vehicles are modeled as concentrated or distributed over a finite area loads moving with constant or time dependent speed.The above pavement-vehicle models are dynamically analyzed by analytical,analytical/numerical or purely numerical methods working in the time or frequency domain.Representative examples are presented to illustrate the models and methods of analysis,demonstrate their merits and assess the effects of the various parameters on pavement response.The paper closes with con-clusions and suggestions for further research in the area.The significance of this research effort has to do with the presentation of the existing literature on the subject in a critical and easy to understand way with the aid of representative examples and the identification of new research areas.展开更多
The dual-rotor structure serves as the primary source of vibration in aero-engines. Understanding itsdynamical model and analyzing dynamic characteristics, such as critical speed and unbalanced response, arecrucial fo...The dual-rotor structure serves as the primary source of vibration in aero-engines. Understanding itsdynamical model and analyzing dynamic characteristics, such as critical speed and unbalanced response, arecrucial for rotor system dynamics. Previous work introduced a coaxial dual-rotor-support scheme for aeroengines,and a physical model featuring a high-speed flexible inner rotor with a substantial length-to-diameter ratiowas designed. Then a finite element (FE) dynamic model based on the Timoshenko beam elements and rigid bodykinematics of the dual-rotor system is modeled, with the Newmark method and Newton–Raphson method used forthe numerical calculation to study the dynamic characteristics of the system. Three different simulation models,including beam-based FE (1D) model, solid-based FE (3D) model, and transfer matrix model, were designed tostudy the characteristics of mode and the critical speed characteristic of the dual-rotor system. The unbalancedresponse of the dual-rotor system was analyzed to study the influence of mass unbalance on the rotor system. Theeffect of different disk unbalance phases and different speed ratios on the dynamic characteristics of the dual-rotorsystem was investigated in detail. The experimental result shows that the beam-based FE model is effective andsuitable for studying the dual-rotor system.展开更多
In today’s information age,video data,as an important carrier of information,is growing explosively in terms of production volume.The quick and accurate extraction of useful information from massive video data has be...In today’s information age,video data,as an important carrier of information,is growing explosively in terms of production volume.The quick and accurate extraction of useful information from massive video data has become a focus of research in the field of computer vision.AI dynamic recognition technology has become one of the key technologies to address this issue due to its powerful data processing capabilities and intelligent recognition functions.Based on this,this paper first elaborates on the development of intelligent video AI dynamic recognition technology,then proposes several optimization strategies for intelligent video AI dynamic recognition technology,and finally analyzes the performance of intelligent video AI dynamic recognition technology for reference.展开更多
To address the fuzziness and variability in determining customer demand importance,a dynamic analysis method based on intuitionistic fuzzy numbers is proposed.First,selected customers use intuitionistic fuzzy numbers ...To address the fuzziness and variability in determining customer demand importance,a dynamic analysis method based on intuitionistic fuzzy numbers is proposed.First,selected customers use intuitionistic fuzzy numbers to represent the importance of each demand.Then,the preference information is aggregated using customer weights and time period weights through the intuitionistic fuzzy ordered weighted average operator,yielding a dynamic vector of the subjective importance of the demand index.Finally,the feasibility of the proposed method is demonstrated through an application example of a vibrating sorting screen.展开更多
The network of Himalayan roadways and highways connects some remote regions of valleys or hill slopes,which is vital for India’s socio-economic growth.Due to natural and artificial factors,frequency of slope instabil...The network of Himalayan roadways and highways connects some remote regions of valleys or hill slopes,which is vital for India’s socio-economic growth.Due to natural and artificial factors,frequency of slope instabilities along the networks has been increasing over last few decades.Assessment of stability of natural and artificial slopes due to construction of these connecting road networks is significant in safely executing these roads throughout the year.Several rock mass classification methods are generally used to assess the strength and deformability of rock mass.This study assesses slope stability along the NH-1A of Ramban district of North Western Himalayas.Various structurally and non-structurally controlled rock mass classification systems have been applied to assess the stability conditions of 14 slopes.For evaluating the stability of these slopes,kinematic analysis was performed along with geological strength index(GSI),rock mass rating(RMR),continuous slope mass rating(CoSMR),slope mass rating(SMR),and Q-slope in the present study.The SMR gives three slopes as completely unstable while CoSMR suggests four slopes as completely unstable.The stability of all slopes was also analyzed using a design chart under dynamic and static conditions by slope stability rating(SSR)for the factor of safety(FoS)of 1.2 and 1 respectively.Q-slope with probability of failure(PoF)1%gives two slopes as stable slopes.Stable slope angle has been determined based on the Q-slope safe angle equation and SSR design chart based on the FoS.The value ranges given by different empirical classifications were RMR(37-74),GSI(27.3-58.5),SMR(11-59),and CoSMR(3.39-74.56).Good relationship was found among RMR&SSR and RMR&GSI with correlation coefficient(R 2)value of 0.815 and 0.6866,respectively.Lastly,a comparative stability of all these slopes based on the above classification has been performed to identify the most critical slope along this road.展开更多
How can we efficiently store and mine dynamically generated dense tensors for modeling the behavior of multidimensional dynamic data?Much of the multidimensional dynamic data in the real world is generated in the form...How can we efficiently store and mine dynamically generated dense tensors for modeling the behavior of multidimensional dynamic data?Much of the multidimensional dynamic data in the real world is generated in the form of time-growing tensors.For example,air quality tensor data consists of multiple sensory values gathered from wide locations for a long time.Such data,accumulated over time,is redundant and consumes a lot ofmemory in its raw form.We need a way to efficiently store dynamically generated tensor data that increase over time and to model their behavior on demand between arbitrary time blocks.To this end,we propose a Block IncrementalDense Tucker Decomposition(BID-Tucker)method for efficient storage and on-demand modeling ofmultidimensional spatiotemporal data.Assuming that tensors come in unit blocks where only the time domain changes,our proposed BID-Tucker first slices the blocks into matrices and decomposes them via singular value decomposition(SVD).The SVDs of the time×space sliced matrices are stored instead of the raw tensor blocks to save space.When modeling from data is required at particular time blocks,the SVDs of corresponding time blocks are retrieved and incremented to be used for Tucker decomposition.The factor matrices and core tensor of the decomposed results can then be used for further data analysis.We compared our proposed BID-Tucker with D-Tucker,which our method extends,and vanilla Tucker decomposition.We show that our BID-Tucker is faster than both D-Tucker and vanilla Tucker decomposition and uses less memory for storage with a comparable reconstruction error.We applied our proposed BID-Tucker to model the spatial and temporal trends of air quality data collected in South Korea from 2018 to 2022.We were able to model the spatial and temporal air quality trends.We were also able to verify unusual events,such as chronic ozone alerts and large fire events.展开更多
During the operation of a DC microgrid,the nonlinearity and low damping characteristics of the DC bus make it prone to oscillatory instability.In this paper,we first establish a discrete nonlinear system dynamic model...During the operation of a DC microgrid,the nonlinearity and low damping characteristics of the DC bus make it prone to oscillatory instability.In this paper,we first establish a discrete nonlinear system dynamic model of a DC microgrid,study the effects of the converter sag coefficient,input voltage,and load resistance on the microgrid stability,and reveal the oscillation mechanism of a DC microgrid caused by a single source.Then,a DC microgrid stability analysis method based on the combination of bifurcation and strobe is used to analyze how the aforementioned parameters influence the oscillation characteristics of the system.Finally,the stability region of the system is obtained by the Jacobi matrix eigenvalue method.Grid simulation verifies the feasibility and effectiveness of the proposed method.展开更多
Segmentally assembled bridges are increasinglyfinding engineering applications in recent years due to their unique advantages,especially as urban viaducts.Vehicle loads are one of the most important variable loads acti...Segmentally assembled bridges are increasinglyfinding engineering applications in recent years due to their unique advantages,especially as urban viaducts.Vehicle loads are one of the most important variable loads acting on bridge structures.Accordingly,the influence of overloaded vehicles on existing assembled bridge structures is an urgent concern at present.This paper establishes thefinite element model of the segmentally assembled bridge based on ABAQUS software and analyzes the influence of vehicle overload on an assembled girder bridge struc-ture.First,afinite element model corresponding to the target bridge is established based on ABAQUS software,and the load is controlled to simulate vehicle movement in each area of the traveling zone at different times.Sec-ond,the key cross-sections of segmental girder bridges are monitored in real time based on the force character-istics of continuous girder bridges,and they are compared with the simulation results.Finally,a material damage ontology model is introduced,and the structural damage caused by different overloading rates is compared and analyzed.Results show that thefinite element modeling method is accurate by comparing with on-site measured data,and it is suitable for the numerical simulation of segmental girder bridges;Dynamic sensors installed at 1/4L,1/2L,and 3/4L of the segmental girder main beams could be used to identify the dynamic response of segmental girder bridges;The bottom plate of the segmental girder bridge is mostly damaged at the position where the length of the precast beam section changes and the midspan position.With the increase in load,damage in the direction of the bridge develops faster than that in the direction of the transverse bridge.Thefindings of this study can guide maintenance departments in the management and maintenance of bridges and vehicles.展开更多
The significant impact of earthquakes on human lives and the built environment underscores the extensive human and economic losses caused by structural collapses. Over the years, researchers have focused on improving ...The significant impact of earthquakes on human lives and the built environment underscores the extensive human and economic losses caused by structural collapses. Over the years, researchers have focused on improving seismic design to mitigate earthquake-induced damages and enhance structural performance. In this study, a specific reinforced concrete (RC) frame structure at Kyungpook National University, designed for educational purposes, is analyzed as a representative case. Utilizing SAP 2000, the research conducts a nonlinear time history analysis to assess the structural performance under seismic conditions. The primary objective is to evaluate the influence of different column section designs, while maintaining identical column section areas, on structural behavior. The study employs two distinct seismic waves from Abeno (ABN) and Takatori (TKT) for the analysis, comparing the structural performance under varying seismic conditions. Key aspects examined include displacement, base shear force, base moment, joint radians, and layer displacement angle. This research is anticipated to serve as a valuable reference for seismic restraint reinforcement work on RC buildings, enriching the methods used for evaluating structures through nonlinear time history analysis based on the synthetic seismic wave approach.展开更多
Statistical Energy Analysis(SEA) is one of the conventional tools for predicting vehicle high-frequency acoustic responses.This study proposes a new method that can provide customized optimization solutions to meet NV...Statistical Energy Analysis(SEA) is one of the conventional tools for predicting vehicle high-frequency acoustic responses.This study proposes a new method that can provide customized optimization solutions to meet NVH targets based on the specific needs of different project teams during the initial project stages.This approach innovatively integrates dynamic optimization,Radial Basis Function(RBF),and Fuzzy Design Variables Genetic Algorithm(FDVGA) into the optimization process of Statistical Energy Analysis(SEA),and also takes vehicle sheet metal into account in the optimization of sound packages.In the implementation process,a correlation model is established through Python scripts to link material density with acoustic parameters,weight,and cost.By combining Optimus and VaOne software,an optimization design workflow is constructed and the optimization design process is successfully executed.Under various constraints related to acoustic performance,weight and cost,a globally optimal design is achieved.This technology has been effectively applied in the field of Battery Electric Vehicle(BEV).展开更多
As the support mechanism of space-borne antennas,space deployable antenna mechanism belongs to complex multi-closed-loop coupling mechanism,configuration design and dynamic analysis are more difficult than general par...As the support mechanism of space-borne antennas,space deployable antenna mechanism belongs to complex multi-closed-loop coupling mechanism,configuration design and dynamic analysis are more difficult than general parallel mechanism.In this paper,an unequal-length scissors mechanism(ULSM)is proposed by changing the position of the internal rotational joint through a basic scissors mechanism.A scissors hoop-rib truss deployable antenna mechanism(SHRTDAM)is constructed by replacing the parabolic rib with the ULSM.Kinematic analysis of SHRTDAM is conducted,and the degree of freedom(DOF)of the whole antenna mechanism is analyzed based on screw theory,the result showed that it has only one DOF.Velocity and acceleration characteristics of SHRTDAM are obtained by the screw derivative and rotation transformation.Based on Lagrange equation,dynamic model of this mechanism is established,the torque required to drive the mechanism is simulated and verified by Adams and MATLAB software.In addition,a ground experiment prototype of 1.5-m diameter was fabricated and a deployment test is conducted,which demonstrated the mobility and deployment performance of the whole mechanism.The mechanism proposed in this paper can provide a good reference for the design and analysis of large aperture space deployable antennas.展开更多
Stapes fracture causes hearing loss and instability in the middle ear hearing system(MEHS). The material used in the stapes reconstruction restores stapes, but the effects of the nonlinear material parameters on the s...Stapes fracture causes hearing loss and instability in the middle ear hearing system(MEHS). The material used in the stapes reconstruction restores stapes, but the effects of the nonlinear material parameters on the stability of the MEHS are still unknown. To address this challenge, the nonlinear dynamic response and stability of the stapes reconstruction are investigated using a multi-degree-of-freedom mechanical model. The material parameters of the implant are tentatively determined by analyzing the natural frequencies of the undamped system. The dynamical properties of the MEHS are characterized under different external excitations. The approximate solution of the MEHS near the resonant frequency is derived through the multiple-time-scale method(MTSM). The results show that the nonlinear stiffness of the material has little influence on the MEHS in the healthy state, but it causes resonant phenomena between the ossicle and the implant in the pathological state.展开更多
This paper uses isogeometric analysis(IGA)based on higher-order shear deformation theory(HSDT)to study the dynamic response of bio-inspired helicoid laminated composite(B-iHLC)plates resting on Pasternak foundation(PF...This paper uses isogeometric analysis(IGA)based on higher-order shear deformation theory(HSDT)to study the dynamic response of bio-inspired helicoid laminated composite(B-iHLC)plates resting on Pasternak foundation(PF)excited by explosive loading.IGA takes advantage of non-uniform rational Bspline(NURBS)basic functions to exactly represent the structure geometry models and the attainment of higher-order approximation conditions.This method also ensures a C1 continuous function in the analysis of transverse shear deformation via HSDT.Furthermore,IGA eliminates the requirement for correction factors and delivers accurate results.Pasternak foundation with two stiffness parameters:springer stiffness(k_(1))and shear stiffness(k_(2)).The derivation of the governing equations is based on Hamilton's principle.The proposed method is validated through numerical examples.A comprehensive analysis of the impact of geometrical parameters,material properties,boundary conditions(BCs),and foundation stiffness on dynamic response of B-i HLC plates is carried out.展开更多
The flow field induced by internal solitary waves(ISWs)is peculiar wherein water motion occurs in the whole water depth,and the strong shear near the pycnocline can be generated due to the opposite flow direction betw...The flow field induced by internal solitary waves(ISWs)is peculiar wherein water motion occurs in the whole water depth,and the strong shear near the pycnocline can be generated due to the opposite flow direction between the upper and lower layers,which is a potential threat to marine risers.In this paper,the flow field of ISWs is obtained with the Korteweg-de Vries(Kd V)equation for a two-layer fluid system.Then,a linear analysis is performed for the dynamic response of a riser with its two ends simply supported under the action of ISWs.The explicit expressions of the deflection and the moment of the riser are deduced based on the modal superposition method.The applicable conditions of the theoretical expressions are discussed.Through comparisons with the finite element simulations for nonlinear dynamic responses,it is proved that the theoretical expressions can roughly reveal the nonlinear dynamic response of risers under ISWs when the approximation for the linear analysis is relaxed to some extent.展开更多
Compliant vertical access risers(CVAR)have broad application prospects in deep-water oil and gas transportation.However,the mechanical behaviors of the CVAR with a variable length during installation remains unclear.T...Compliant vertical access risers(CVAR)have broad application prospects in deep-water oil and gas transportation.However,the mechanical behaviors of the CVAR with a variable length during installation remains unclear.To address this issue,based on the flexible segment method,a model of CVAR with a variable length during installation is established in this study,which is verified by the comparison with commercial software.Then,the mechanical behaviors of CVAR during installation are investigated.The results reveal that the CVAR configuration is significantly affected by the buoyancy blocks.The streamwise displacement of CVAR increases with the increase of current velocity.When the BOP weight is insuffcient,obvious upbending is observed in the lower region and transition region,leading to local compression.When the platform moves in the opposite direction to the current,the maximum stress is larger than that of the scenario when the platform moves in the same direction as the current.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.52107087).
文摘The power grid,as the hub connecting the power supply and consumption sides,plays an important role in achieving carbon neutrality in China.In emerging carbon markets,assessing the investment benefits of power-grid enterprises is essential.Thus,studying the impact of the carbon market on the investment and operation of powergrid enterprises is key to ensuring their efficient operation.Notably,few studies have examined the interaction between the carbon and electricity markets using system dynamics models,highlighting a research gap in this area.This study investigates the impact of the carbon market on the investment of power-grid enterprises using a novel evaluation system based on a system dynamics model that considers carbon-emissions from an established carbon-emission accounting model.First,an index system for benefit evaluation was constructed from six aspects:financing ability,economic benefit,reliability,social responsibility,user satisfaction,and carbon-emissions.A system dynamics model was then developed to reflect the causal feedback relationship between the impact of the carbon market on the investment and operation of power-grid enterprises.The simulation results of a provincial power-grid enterprise analyze comprehensive investment evaluation benefits over a 10-year period and the impact of carbon emissions on the investment and operation of power-grid enterprises.This study provides guidelines for the benign development of power-grid enterprises within the context of the carbon market.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52271300,52071337,and 51809279)the National Key Research and Development Program of China(Grant No.2022YFC2806501)the High-tech Ship Research Projects Sponsored by MIIT(Grant No.CBG2N21-4-2-5).
文摘The safety of risers in hang-off states is a vital challenge in offshore oil and gas engineering.A new hang-off system installed on top of risers is proposed for improving the security of risers.This approach leads to a challenging problem:coupling the dynamics of risers with a new hang-off system combined with multiple structures and complex constraints.To accurately analyze the dynamic responses of the coupled system,a coupled dynamic model is established based on the Euler-Bernoulli beam-column theory and penalty function method.A comprehensive analysis method is proposed for coupled dynamic analysis by combining the finite element method and the Newmarkβmethod.An analysis program is also developed in MATLAB for dynamic simulation.The simulation results show that the dynamic performances of the risers at the top part are significantly improved by the new hang-off system,especially the novel design,which includes the centralizer and articulation joint.The bending moment and lateral deformation of the risers at the top part decrease,while the hang-off joint experiences a great bending moment at the bottom of the lateral restraint area which requires particular attention in design and application.The platform navigation speed range under the safety limits of risers expands with the new hang-off system in use.
基金support from the Exploring Youth Project of Zhejiang Natural Science Foundation (Grant No.LQ24E080009)the Key Project of Natural Science Foundation of Zhejiang Province (Grant No.LXZ22E080001)the National Natural Science Foundation of China (Grant No.52108347).
文摘A rigorous analytical model is developed for simulating the vibration behaviors of large-diameter openended pipe piles(OEPPs)and surrounding soil undergoing high-strain impact loading.To describe the soil behavior,the soil along pile shaft is divided into slip and nonslip zones and the base soil is modeled as a fictitious-soil pile(FSP)to account for the wave propagation in the soil.True soil properties are adopted and slippage at the pile-soil interface is considered,allowing realistic representation of largediameter OEPP mechanics.The developed model is validated by comparing with conventional models and finite element method(FEM).It is further used to successfully simulate and interpret the behaviors of a steel OEPP during the offshore field test.It is found that the variation in the vertical vibrations of shaft soil along radial direction is significant for large-diameter OEPPs,and the velocity amplitudes of the internal and external soil attenuate following different patterns.The shaft soil motion may not attenuate with depth due to the soil slippage,while the wave attenuation at base soil indicates an influence depth,with a faster attenuation rate than that in the pile.The findings from the current study should aid in simulating the vibration behaviors of large-diameter OEPP-soil system under high-strain dynamic loading.
文摘Maintaining the integrity and longevity of structures is essential in many industries,such as aerospace,nuclear,and petroleum.To achieve the cost-effectiveness of large-scale systems in petroleum drilling,a strong emphasis on structural durability and monitoring is required.This study focuses on the mechanical vibrations that occur in rotary drilling systems,which have a substantial impact on the structural integrity of drilling equipment.The study specifically investigates axial,torsional,and lateral vibrations,which might lead to negative consequences such as bit-bounce,chaotic whirling,and high-frequency stick-slip.These events not only hinder the efficiency of drilling but also lead to exhaustion and harm to the system’s components since they are difficult to be detected and controlled in real time.The study investigates the dynamic interactions of these vibrations,specifically in their high-frequency modes,usingfield data obtained from measurement while drilling.Thefindings have demonstrated the effect of strong coupling between the high-frequency modes of these vibrations on drilling sys-tem performance.The obtained results highlight the importance of considering the interconnected impacts of these vibrations when designing and implementing robust control systems.Therefore,integrating these compo-nents can increase the durability of drill bits and drill strings,as well as improve the ability to monitor and detect damage.Moreover,by exploiting thesefindings,the assessment of structural resilience in rotary drilling systems can be enhanced.Furthermore,the study demonstrates the capacity of structural health monitoring to improve the quality,dependability,and efficiency of rotary drilling systems in the petroleum industry.
文摘This study presents results from sentiment analysis of Dynamic message sign (DMS) message content, focusing on messages that include numbers of road fatalities. As a traffic management tool, DMS plays a role in influencing driver behavior and assisting transportation agencies in achieving safe and efficient traffic movement. However, the psychological and behavioral effects of displaying fatality numbers on DMS remain poorly understood;hence, it is important to know the potential impacts of displaying such messages. The Iowa Department of Transportation displays the number of fatalities on a first screen, followed by a supplemental message hoping to promote safe driving;an example is “19 TRAFFIC DEATHS THIS YEAR IF YOU HAVE A SUPER BOWL DON’T DRIVE HIGH.” We employ natural language processing to decode the sentiment and undertone of the supplementary message and investigate how they influence driving speeds. According to the results of a mixed effect model, drivers reduced speeds marginally upon encountering DMS fatality text with a positive sentiment with a neutral undertone. This category had the largest associated amount of speed reduction, while messages with negative sentiment with a negative undertone had the second largest amount of speed reduction, greater than other combinations, including positive sentiment with a positive undertone.
文摘This paper reviews works on the dynamic analysis of flexible and rigid pavements under moving vehicles on the basis of continuum-based plane strain models and linear theories.The purpose of this review is to provide in-formation about the existing works on the subject,critically discuss them and make suggestions for further research.The reviewed papers are presented on the basis of the various models for pavement-vehicle systems and the various methods for dynamically analyzing these systems.Flexible pavements are modeled by a homogeneous or layered half-plane with isotropic or anisotropic and linear elastic,viscoelastic or poroelastic material behavior.Rigid pavements are modeled by a beam or plate on a homogeneous or layered half-plane with material properties like the ones for flexible pavements.The vehicles are modeled as concentrated or distributed over a finite area loads moving with constant or time dependent speed.The above pavement-vehicle models are dynamically analyzed by analytical,analytical/numerical or purely numerical methods working in the time or frequency domain.Representative examples are presented to illustrate the models and methods of analysis,demonstrate their merits and assess the effects of the various parameters on pavement response.The paper closes with con-clusions and suggestions for further research in the area.The significance of this research effort has to do with the presentation of the existing literature on the subject in a critical and easy to understand way with the aid of representative examples and the identification of new research areas.
文摘The dual-rotor structure serves as the primary source of vibration in aero-engines. Understanding itsdynamical model and analyzing dynamic characteristics, such as critical speed and unbalanced response, arecrucial for rotor system dynamics. Previous work introduced a coaxial dual-rotor-support scheme for aeroengines,and a physical model featuring a high-speed flexible inner rotor with a substantial length-to-diameter ratiowas designed. Then a finite element (FE) dynamic model based on the Timoshenko beam elements and rigid bodykinematics of the dual-rotor system is modeled, with the Newmark method and Newton–Raphson method used forthe numerical calculation to study the dynamic characteristics of the system. Three different simulation models,including beam-based FE (1D) model, solid-based FE (3D) model, and transfer matrix model, were designed tostudy the characteristics of mode and the critical speed characteristic of the dual-rotor system. The unbalancedresponse of the dual-rotor system was analyzed to study the influence of mass unbalance on the rotor system. Theeffect of different disk unbalance phases and different speed ratios on the dynamic characteristics of the dual-rotorsystem was investigated in detail. The experimental result shows that the beam-based FE model is effective andsuitable for studying the dual-rotor system.
文摘In today’s information age,video data,as an important carrier of information,is growing explosively in terms of production volume.The quick and accurate extraction of useful information from massive video data has become a focus of research in the field of computer vision.AI dynamic recognition technology has become one of the key technologies to address this issue due to its powerful data processing capabilities and intelligent recognition functions.Based on this,this paper first elaborates on the development of intelligent video AI dynamic recognition technology,then proposes several optimization strategies for intelligent video AI dynamic recognition technology,and finally analyzes the performance of intelligent video AI dynamic recognition technology for reference.
文摘To address the fuzziness and variability in determining customer demand importance,a dynamic analysis method based on intuitionistic fuzzy numbers is proposed.First,selected customers use intuitionistic fuzzy numbers to represent the importance of each demand.Then,the preference information is aggregated using customer weights and time period weights through the intuitionistic fuzzy ordered weighted average operator,yielding a dynamic vector of the subjective importance of the demand index.Finally,the feasibility of the proposed method is demonstrated through an application example of a vibrating sorting screen.
文摘The network of Himalayan roadways and highways connects some remote regions of valleys or hill slopes,which is vital for India’s socio-economic growth.Due to natural and artificial factors,frequency of slope instabilities along the networks has been increasing over last few decades.Assessment of stability of natural and artificial slopes due to construction of these connecting road networks is significant in safely executing these roads throughout the year.Several rock mass classification methods are generally used to assess the strength and deformability of rock mass.This study assesses slope stability along the NH-1A of Ramban district of North Western Himalayas.Various structurally and non-structurally controlled rock mass classification systems have been applied to assess the stability conditions of 14 slopes.For evaluating the stability of these slopes,kinematic analysis was performed along with geological strength index(GSI),rock mass rating(RMR),continuous slope mass rating(CoSMR),slope mass rating(SMR),and Q-slope in the present study.The SMR gives three slopes as completely unstable while CoSMR suggests four slopes as completely unstable.The stability of all slopes was also analyzed using a design chart under dynamic and static conditions by slope stability rating(SSR)for the factor of safety(FoS)of 1.2 and 1 respectively.Q-slope with probability of failure(PoF)1%gives two slopes as stable slopes.Stable slope angle has been determined based on the Q-slope safe angle equation and SSR design chart based on the FoS.The value ranges given by different empirical classifications were RMR(37-74),GSI(27.3-58.5),SMR(11-59),and CoSMR(3.39-74.56).Good relationship was found among RMR&SSR and RMR&GSI with correlation coefficient(R 2)value of 0.815 and 0.6866,respectively.Lastly,a comparative stability of all these slopes based on the above classification has been performed to identify the most critical slope along this road.
基金supported by the Institute of Information&Communications Technology Planning&Evaluation (IITP)grant funded by the Korean government (MSIT) (No.2022-0-00369)by the NationalResearch Foundation of Korea Grant funded by the Korean government (2018R1A5A1060031,2022R1F1A1065664).
文摘How can we efficiently store and mine dynamically generated dense tensors for modeling the behavior of multidimensional dynamic data?Much of the multidimensional dynamic data in the real world is generated in the form of time-growing tensors.For example,air quality tensor data consists of multiple sensory values gathered from wide locations for a long time.Such data,accumulated over time,is redundant and consumes a lot ofmemory in its raw form.We need a way to efficiently store dynamically generated tensor data that increase over time and to model their behavior on demand between arbitrary time blocks.To this end,we propose a Block IncrementalDense Tucker Decomposition(BID-Tucker)method for efficient storage and on-demand modeling ofmultidimensional spatiotemporal data.Assuming that tensors come in unit blocks where only the time domain changes,our proposed BID-Tucker first slices the blocks into matrices and decomposes them via singular value decomposition(SVD).The SVDs of the time×space sliced matrices are stored instead of the raw tensor blocks to save space.When modeling from data is required at particular time blocks,the SVDs of corresponding time blocks are retrieved and incremented to be used for Tucker decomposition.The factor matrices and core tensor of the decomposed results can then be used for further data analysis.We compared our proposed BID-Tucker with D-Tucker,which our method extends,and vanilla Tucker decomposition.We show that our BID-Tucker is faster than both D-Tucker and vanilla Tucker decomposition and uses less memory for storage with a comparable reconstruction error.We applied our proposed BID-Tucker to model the spatial and temporal trends of air quality data collected in South Korea from 2018 to 2022.We were able to model the spatial and temporal air quality trends.We were also able to verify unusual events,such as chronic ozone alerts and large fire events.
基金National Natural Science Foundation of China(Nos.51767017,51867015,62063016)Fundamental Research Innovation Group Project of Gansu Province(18JR3RA133)Gansu Provincial Science and Technology Program(20JR5RA048,20JR10RA177).
文摘During the operation of a DC microgrid,the nonlinearity and low damping characteristics of the DC bus make it prone to oscillatory instability.In this paper,we first establish a discrete nonlinear system dynamic model of a DC microgrid,study the effects of the converter sag coefficient,input voltage,and load resistance on the microgrid stability,and reveal the oscillation mechanism of a DC microgrid caused by a single source.Then,a DC microgrid stability analysis method based on the combination of bifurcation and strobe is used to analyze how the aforementioned parameters influence the oscillation characteristics of the system.Finally,the stability region of the system is obtained by the Jacobi matrix eigenvalue method.Grid simulation verifies the feasibility and effectiveness of the proposed method.
基金supported in part by the Key Research Projects of Higher Education Institutions in Henan Province(Grant No.24A560021)in part by the Henan Postdoctoral Foundation(Grant No.202102015).
文摘Segmentally assembled bridges are increasinglyfinding engineering applications in recent years due to their unique advantages,especially as urban viaducts.Vehicle loads are one of the most important variable loads acting on bridge structures.Accordingly,the influence of overloaded vehicles on existing assembled bridge structures is an urgent concern at present.This paper establishes thefinite element model of the segmentally assembled bridge based on ABAQUS software and analyzes the influence of vehicle overload on an assembled girder bridge struc-ture.First,afinite element model corresponding to the target bridge is established based on ABAQUS software,and the load is controlled to simulate vehicle movement in each area of the traveling zone at different times.Sec-ond,the key cross-sections of segmental girder bridges are monitored in real time based on the force character-istics of continuous girder bridges,and they are compared with the simulation results.Finally,a material damage ontology model is introduced,and the structural damage caused by different overloading rates is compared and analyzed.Results show that thefinite element modeling method is accurate by comparing with on-site measured data,and it is suitable for the numerical simulation of segmental girder bridges;Dynamic sensors installed at 1/4L,1/2L,and 3/4L of the segmental girder main beams could be used to identify the dynamic response of segmental girder bridges;The bottom plate of the segmental girder bridge is mostly damaged at the position where the length of the precast beam section changes and the midspan position.With the increase in load,damage in the direction of the bridge develops faster than that in the direction of the transverse bridge.Thefindings of this study can guide maintenance departments in the management and maintenance of bridges and vehicles.
文摘The significant impact of earthquakes on human lives and the built environment underscores the extensive human and economic losses caused by structural collapses. Over the years, researchers have focused on improving seismic design to mitigate earthquake-induced damages and enhance structural performance. In this study, a specific reinforced concrete (RC) frame structure at Kyungpook National University, designed for educational purposes, is analyzed as a representative case. Utilizing SAP 2000, the research conducts a nonlinear time history analysis to assess the structural performance under seismic conditions. The primary objective is to evaluate the influence of different column section designs, while maintaining identical column section areas, on structural behavior. The study employs two distinct seismic waves from Abeno (ABN) and Takatori (TKT) for the analysis, comparing the structural performance under varying seismic conditions. Key aspects examined include displacement, base shear force, base moment, joint radians, and layer displacement angle. This research is anticipated to serve as a valuable reference for seismic restraint reinforcement work on RC buildings, enriching the methods used for evaluating structures through nonlinear time history analysis based on the synthetic seismic wave approach.
文摘Statistical Energy Analysis(SEA) is one of the conventional tools for predicting vehicle high-frequency acoustic responses.This study proposes a new method that can provide customized optimization solutions to meet NVH targets based on the specific needs of different project teams during the initial project stages.This approach innovatively integrates dynamic optimization,Radial Basis Function(RBF),and Fuzzy Design Variables Genetic Algorithm(FDVGA) into the optimization process of Statistical Energy Analysis(SEA),and also takes vehicle sheet metal into account in the optimization of sound packages.In the implementation process,a correlation model is established through Python scripts to link material density with acoustic parameters,weight,and cost.By combining Optimus and VaOne software,an optimization design workflow is constructed and the optimization design process is successfully executed.Under various constraints related to acoustic performance,weight and cost,a globally optimal design is achieved.This technology has been effectively applied in the field of Battery Electric Vehicle(BEV).
基金supported by the National Natural Science Foundation of China(Grant Nos.52105035 and 52075467)the Natural Science Foundation of Hebei Province of China(Grant No.E2021203109)+1 种基金the State Key Laboratory of Robotics and Systems(HIT)(Grant No.SKLRS-2021-KF-15)the Industrial Robot Control and Reliability Technology Innovation Center of Hebei Province(Grant No.JXKF2105).
文摘As the support mechanism of space-borne antennas,space deployable antenna mechanism belongs to complex multi-closed-loop coupling mechanism,configuration design and dynamic analysis are more difficult than general parallel mechanism.In this paper,an unequal-length scissors mechanism(ULSM)is proposed by changing the position of the internal rotational joint through a basic scissors mechanism.A scissors hoop-rib truss deployable antenna mechanism(SHRTDAM)is constructed by replacing the parabolic rib with the ULSM.Kinematic analysis of SHRTDAM is conducted,and the degree of freedom(DOF)of the whole antenna mechanism is analyzed based on screw theory,the result showed that it has only one DOF.Velocity and acceleration characteristics of SHRTDAM are obtained by the screw derivative and rotation transformation.Based on Lagrange equation,dynamic model of this mechanism is established,the torque required to drive the mechanism is simulated and verified by Adams and MATLAB software.In addition,a ground experiment prototype of 1.5-m diameter was fabricated and a deployment test is conducted,which demonstrated the mobility and deployment performance of the whole mechanism.The mechanism proposed in this paper can provide a good reference for the design and analysis of large aperture space deployable antennas.
基金Project supported by the National Natural Science Foundation of China (Nos. 12072222, 12132010,12021002, 11991032, and 12372019)the State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures of China (No. SKLTESKF1901)the Aeronautical Science Foundation of China (No. ASFC-201915048001)。
文摘Stapes fracture causes hearing loss and instability in the middle ear hearing system(MEHS). The material used in the stapes reconstruction restores stapes, but the effects of the nonlinear material parameters on the stability of the MEHS are still unknown. To address this challenge, the nonlinear dynamic response and stability of the stapes reconstruction are investigated using a multi-degree-of-freedom mechanical model. The material parameters of the implant are tentatively determined by analyzing the natural frequencies of the undamped system. The dynamical properties of the MEHS are characterized under different external excitations. The approximate solution of the MEHS near the resonant frequency is derived through the multiple-time-scale method(MTSM). The results show that the nonlinear stiffness of the material has little influence on the MEHS in the healthy state, but it causes resonant phenomena between the ossicle and the implant in the pathological state.
文摘This paper uses isogeometric analysis(IGA)based on higher-order shear deformation theory(HSDT)to study the dynamic response of bio-inspired helicoid laminated composite(B-iHLC)plates resting on Pasternak foundation(PF)excited by explosive loading.IGA takes advantage of non-uniform rational Bspline(NURBS)basic functions to exactly represent the structure geometry models and the attainment of higher-order approximation conditions.This method also ensures a C1 continuous function in the analysis of transverse shear deformation via HSDT.Furthermore,IGA eliminates the requirement for correction factors and delivers accurate results.Pasternak foundation with two stiffness parameters:springer stiffness(k_(1))and shear stiffness(k_(2)).The derivation of the governing equations is based on Hamilton's principle.The proposed method is validated through numerical examples.A comprehensive analysis of the impact of geometrical parameters,material properties,boundary conditions(BCs),and foundation stiffness on dynamic response of B-i HLC plates is carried out.
基金Project supported by the National Natural Science Foundation of China(Nos.12132018,11972352,12202455)the Strategic Priority Research Program of the Chinese Academy of Sciences of China(No.XDA22000000)。
文摘The flow field induced by internal solitary waves(ISWs)is peculiar wherein water motion occurs in the whole water depth,and the strong shear near the pycnocline can be generated due to the opposite flow direction between the upper and lower layers,which is a potential threat to marine risers.In this paper,the flow field of ISWs is obtained with the Korteweg-de Vries(Kd V)equation for a two-layer fluid system.Then,a linear analysis is performed for the dynamic response of a riser with its two ends simply supported under the action of ISWs.The explicit expressions of the deflection and the moment of the riser are deduced based on the modal superposition method.The applicable conditions of the theoretical expressions are discussed.Through comparisons with the finite element simulations for nonlinear dynamic responses,it is proved that the theoretical expressions can roughly reveal the nonlinear dynamic response of risers under ISWs when the approximation for the linear analysis is relaxed to some extent.
基金supported by the National Natural Science Foundation of China-Shandong Joint Fund(Grant No.U2006226).
文摘Compliant vertical access risers(CVAR)have broad application prospects in deep-water oil and gas transportation.However,the mechanical behaviors of the CVAR with a variable length during installation remains unclear.To address this issue,based on the flexible segment method,a model of CVAR with a variable length during installation is established in this study,which is verified by the comparison with commercial software.Then,the mechanical behaviors of CVAR during installation are investigated.The results reveal that the CVAR configuration is significantly affected by the buoyancy blocks.The streamwise displacement of CVAR increases with the increase of current velocity.When the BOP weight is insuffcient,obvious upbending is observed in the lower region and transition region,leading to local compression.When the platform moves in the opposite direction to the current,the maximum stress is larger than that of the scenario when the platform moves in the same direction as the current.