This paper addresses the impact of vertical vibration negative effects,unbalanced radial forces generated by the static eccentricity of the hub motor,and road excitation on the suspension performance of Hub Motor Driv...This paper addresses the impact of vertical vibration negative effects,unbalanced radial forces generated by the static eccentricity of the hub motor,and road excitation on the suspension performance of Hub Motor Driven Vehicle(HMDV).A dynamic inertial suspension based on Active Disturbance Rejection Control(ADRC)is proposed,combining the vertical dynamic characteristics of dynamic inertial suspension with the features of ADRC,which distinguishes between internal and external disturbances and arranges the transition process.Firstly,a simulation model of the static eccentricity of the hub motor is established to simulate the unbalanced radial electromagnetic force generated under static eccentricity.A quarter-vehicle model of an HMDV with a controllable dynamic inertial suspension is then constructed.Subsequently,the passive suspension model is studied under different grades of road excitation,and the impact mechanism of suspension performance at speeds of 0–20 m/s is analyzed.Next,the three main components within the ADRC controller are designed for the second-order controlled system,and optimization algorithms are used to optimize its internal parameters.Finally,the performance of the traditional passive suspension,the PID-based controllable dynamic inertial suspension,and the ADRC-based controllable dynamic inertial suspension are analyzed under different road inputs.Simulation results show that,under sinusoidal road input,the ADRC-based controllable dynamic inertial suspension exhibits a 52.3%reduction in the low-frequency resonance peak in the vehicle body acceleration gain diagram compared to the traditional passive suspension,with significant performance optimization in the high-frequency range.Under random road input,the ADRC-based controllable dynamic inertial suspension achieves a 29.53%reduction in the root mean square value of vehicle body acceleration and a 14.87%reduction in dynamic tire load.This indicates that the designed controllable dynamic inertial suspension possesses excellent vibration isolation performance.展开更多
The thermoelectric energy conversion technique by employing the Disk-Magnet Electromagnetic Induction (DM-EMI) is examined in detail, and possible applications to heat engines as one of the energy-harvesting technolog...The thermoelectric energy conversion technique by employing the Disk-Magnet Electromagnetic Induction (DM-EMI) is examined in detail, and possible applications to heat engines as one of the energy-harvesting technologies are discussed. The idea is induced by the analysis of thermomechanical dynamics (TMD) for a nonequilibrium irreversible thermodynamic system of heat engines, such as a drinking bird and a low temperature Stirling engine, resulting in thermoelectric energy generation different from conventional heat engines. The current thermoelectric energy conversion with DM-EMI can be applied to wide ranges of machines and temperature differences. The mechanism of DM-EMI energy converter is categorized as the axial flux generator (AFG), which is the reason why the technology is applicable to sensitive thermoelectric conversions. On the other hand, almost all the conventional turbines use the radius flux generator to extract huge electric power, which uses the radial flux generator (RFG). The axial flux generator is helpful for a low mechanoelectric energy conversion and activations of waste heat from macroscopic energy generators such as wind, geothermal, thermal, nuclear power plants and heat-dissipation lines. The technique of DM-EMI will contribute to solving environmental problems to maintain clean and sustainable energy as one of the energy harvesting technologies.展开更多
The new independent solutions of the nonlinear differential equation with time-dependent coefficients (NDE-TC) are discussed, for the first time, by employing experimental device called a drinking bird whose simple ba...The new independent solutions of the nonlinear differential equation with time-dependent coefficients (NDE-TC) are discussed, for the first time, by employing experimental device called a drinking bird whose simple back-and-forth motion develops into water drinking motion. The solution to a drinking bird equation of motion manifests itself the transition from thermodynamic equilibrium to nonequilibrium irreversible states. The independent solution signifying a nonequilibrium thermal state seems to be constructed as if two independent bifurcation solutions are synthesized, and so, the solution is tentatively termed as the bifurcation-integration solution. The bifurcation-integration solution expresses the transition from mechanical and thermodynamic equilibrium to a nonequilibrium irreversible state, which is explicitly shown by the nonlinear differential equation with time-dependent coefficients (NDE-TC). The analysis established a new theoretical approach to nonequilibrium irreversible states, thermomechanical dynamics (TMD). The TMD method enables one to obtain thermodynamically consistent and time-dependent progresses of thermodynamic quantities, by employing the bifurcation-integration solutions of NDE-TC. We hope that the basic properties of bifurcation-integration solutions will be studied and investigated further in mathematics, physics, chemistry and nonlinear sciences in general.展开更多
In the relentless quest for digital sovereignty, organizations face an unprecedented challenge in safeguarding sensitive information, protecting against cyber threats, and maintaining regulatory compliance. This manus...In the relentless quest for digital sovereignty, organizations face an unprecedented challenge in safeguarding sensitive information, protecting against cyber threats, and maintaining regulatory compliance. This manuscript unveils a revolutionary blueprint for cyber resilience, empowering organizations to transcend the limitations of traditional cybersecurity paradigms and forge ahead into uncharted territories of data security excellence and frictionless secrets management experience. Enter a new era of cybersecurity innovation and continued excellence. By seamlessly integrating secrets based on logical environments and applications (assets), dynamic secrets management orchestrates and automates the secrets lifecycle management with other platform cohesive integrations. Enterprises can enhance security, streamline operations, fasten development practices, avoid secrets sprawl, and improve overall compliance and DevSecOps practice. This enables the enterprises to enhance security, streamline operations, fasten development & deployment practices, avoid secrets spawls, and improve overall volume in shipping software with paved-road DevSecOps Practices, and improve developers’ productivity. By seamlessly integrating secrets based on logical environments and applications (assets), dynamic secrets management orchestrates and automates the application secrets lifecycle with other platform cohesive integrations. Organizations can enhance security, streamline operations, fasten development & deployment practices, avoid secrets sprawl, and improve overall volume in shipping software with paved-road DevSecOps practices. Most importantly, increases developer productivity.展开更多
A thermoelectric generation Stirling engine (TEG-Stirling engine) is discussed by employing a low temperature Stirling engine and the dissipative equation of motion derived from the method of thermomechanical dynamics...A thermoelectric generation Stirling engine (TEG-Stirling engine) is discussed by employing a low temperature Stirling engine and the dissipative equation of motion derived from the method of thermomechanical dynamics (TMD). The results and mechanism of axial flux electromagnetic induction (AF-EMI) are applied to a low temperature Stirling engine, resulting in a TEG-Stirling engine. The method of TMD produced thermodynamically consistent and time-dependent physical quantities for the first time, such as internal energy ℰ(t), thermodynamic work Wth(t), the total entropy (heat dissipation) Qd(t)and measure or temperature of a nonequilibrium state T˜(t). The TMD analysis produced a lightweight mechanical system of TEG-Stirling engine which derives electric power from waste heat of temperature (40˚CT100˚C) by a thermoelectric conversion method. An optimal low rotational speed about 30θ′(t)/(2π)60(rpm) is found, applicable to devices for sustainable, clean energy technologies. The stability of a thermal state and angular rotations of TEG-Stirling engine are specifically shown by employing properties of nonequilibrium temperature T˜(t), which is also applied to study optimal fuel-injection and combustion timings of heat engines.展开更多
目的建立基于聚合酶链式反应−限制性片段长度多态性(PCR−RFLP)策略,可用于家蝇抗药性相关羧酸酯酶MdαE7 G137D和乙酰胆碱酯酶(AChE)V260L与F407Y突变的分子检测方法。方法2022年6-7月,在四川省内江市资中、威远、隆昌、市中和东兴5个县...目的建立基于聚合酶链式反应−限制性片段长度多态性(PCR−RFLP)策略,可用于家蝇抗药性相关羧酸酯酶MdαE7 G137D和乙酰胆碱酯酶(AChE)V260L与F407Y突变的分子检测方法。方法2022年6-7月,在四川省内江市资中、威远、隆昌、市中和东兴5个县(市、区),采用诱蝇笼或捕虫网采集家蝇成虫,用无水乙醇保存,带回实验室操作。根据家蝇羧酸酯酶MdαE7和AChE基因序列设计引物,以单只家蝇的基因组DNA为模板,进行家蝇MdαE7基因和AChE编码基因片段的PCR扩增,用限制性内切酶酶切PCR产物,根据酶切产物的电泳检测结果来区分家蝇个体的基因型。结果采用基因特异性引物,可扩增出长度分别为213、170和133 bp的PCR产物MdαE7-137,AChE-260和AChE-407。MdαE7-137经Bst XI酶切后,电泳检测显示26和187 bp 2条条带为137位点敏感纯合子(GG),仅213 bp 1条条带为抗性纯合子(DD),26、187和213 bp 3条条带为杂合子(G/D)。AChE-260经Sa1 I-HF®酶切后,电泳显示170 bp 1条条带的,为AChE 260位点敏感纯合子(VV),显示26和144 bp 2条条带的,为抗性纯合子(LL),显示26、144和170 bp 3条条带的,为杂合子(V/L)。AChE-407经Eco RV-HF®酶切后,电泳条带存在133 bp 1条条带的,为AChE 407位点敏感纯合子(FF),存在31和102 bp 2条条带的,为抗性纯合子(YY),存在31、102和133 bp 3条条带的,为杂合子(F/Y)。结论建立的PCR−RFLP基因分型方法简便、准确性高,可分别用于快速检测野外家蝇种群中抗药性相关的羧酸酯酶MdαE7 G137D、AChE V260L和AchE F407Y突变的频率。展开更多
基于反应力场(reactive force field,ReaxFF)的反应分子动力学模拟的结果分析具有挑战性。国际首个ReaxFF MD化学反应分析及可视化工具VARxMD(visulization and analysis of ReaxFF molecular dynamics)可自动生成不同时刻之间完整的化...基于反应力场(reactive force field,ReaxFF)的反应分子动力学模拟的结果分析具有挑战性。国际首个ReaxFF MD化学反应分析及可视化工具VARxMD(visulization and analysis of ReaxFF molecular dynamics)可自动生成不同时刻之间完整的化学反应列表,通过物种检索进一步对反应路径进行分类。但VARxMD目前的反应分析针对的是某一确定条件下单一的ReaxFF MD模拟轨迹,利用VARxMD分析获得一次模拟的完整反应列表需要消耗大量计算资源和时间。本文提出基于数据库来储存VARxMD反应分析结果数据,基于数据库检索进一步分析反应的思路,并采用MVVM(model-view-view model)的系统设计模式、结合渐进式框架Vue.js建立了ReaxFF MD模拟的化学反应数据系统ReaxMDDB(reaction database of ReaxFF MD simulation)。系统应用于多个RP-3模型热解和氧化模拟反应数据的结果表明:该系统不仅实现了多个ReaxFF MD模拟的详细反应的统一分析和化学反应的2D分子结构显示,而且可永久保存模拟获得的反应数据集以备后续进一步分析反应机理。ReaxMDDB具有很好的通用性,为认识不同反应模拟所揭示的共性化学反应机理提供了方便的平台。展开更多
基金the National Natural Science Foundation of China(Grant Numbers 52072157,52002156,52202471)Natural Science Foundation of Jiangsu Province(Grant Number BK20200911)+2 种基金Chongqing Key Laboratory of Urban Rail Transit System Integration and Control Open Fund(Grant Number CKLURVIOM_KFKT_2023001)Jiangsu Funding Program for Excellent Postdoctoral Talent(Grant Number 2022ZB659)State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle,Hunan University(Grant Number 82315004).
文摘This paper addresses the impact of vertical vibration negative effects,unbalanced radial forces generated by the static eccentricity of the hub motor,and road excitation on the suspension performance of Hub Motor Driven Vehicle(HMDV).A dynamic inertial suspension based on Active Disturbance Rejection Control(ADRC)is proposed,combining the vertical dynamic characteristics of dynamic inertial suspension with the features of ADRC,which distinguishes between internal and external disturbances and arranges the transition process.Firstly,a simulation model of the static eccentricity of the hub motor is established to simulate the unbalanced radial electromagnetic force generated under static eccentricity.A quarter-vehicle model of an HMDV with a controllable dynamic inertial suspension is then constructed.Subsequently,the passive suspension model is studied under different grades of road excitation,and the impact mechanism of suspension performance at speeds of 0–20 m/s is analyzed.Next,the three main components within the ADRC controller are designed for the second-order controlled system,and optimization algorithms are used to optimize its internal parameters.Finally,the performance of the traditional passive suspension,the PID-based controllable dynamic inertial suspension,and the ADRC-based controllable dynamic inertial suspension are analyzed under different road inputs.Simulation results show that,under sinusoidal road input,the ADRC-based controllable dynamic inertial suspension exhibits a 52.3%reduction in the low-frequency resonance peak in the vehicle body acceleration gain diagram compared to the traditional passive suspension,with significant performance optimization in the high-frequency range.Under random road input,the ADRC-based controllable dynamic inertial suspension achieves a 29.53%reduction in the root mean square value of vehicle body acceleration and a 14.87%reduction in dynamic tire load.This indicates that the designed controllable dynamic inertial suspension possesses excellent vibration isolation performance.
文摘The thermoelectric energy conversion technique by employing the Disk-Magnet Electromagnetic Induction (DM-EMI) is examined in detail, and possible applications to heat engines as one of the energy-harvesting technologies are discussed. The idea is induced by the analysis of thermomechanical dynamics (TMD) for a nonequilibrium irreversible thermodynamic system of heat engines, such as a drinking bird and a low temperature Stirling engine, resulting in thermoelectric energy generation different from conventional heat engines. The current thermoelectric energy conversion with DM-EMI can be applied to wide ranges of machines and temperature differences. The mechanism of DM-EMI energy converter is categorized as the axial flux generator (AFG), which is the reason why the technology is applicable to sensitive thermoelectric conversions. On the other hand, almost all the conventional turbines use the radius flux generator to extract huge electric power, which uses the radial flux generator (RFG). The axial flux generator is helpful for a low mechanoelectric energy conversion and activations of waste heat from macroscopic energy generators such as wind, geothermal, thermal, nuclear power plants and heat-dissipation lines. The technique of DM-EMI will contribute to solving environmental problems to maintain clean and sustainable energy as one of the energy harvesting technologies.
文摘The new independent solutions of the nonlinear differential equation with time-dependent coefficients (NDE-TC) are discussed, for the first time, by employing experimental device called a drinking bird whose simple back-and-forth motion develops into water drinking motion. The solution to a drinking bird equation of motion manifests itself the transition from thermodynamic equilibrium to nonequilibrium irreversible states. The independent solution signifying a nonequilibrium thermal state seems to be constructed as if two independent bifurcation solutions are synthesized, and so, the solution is tentatively termed as the bifurcation-integration solution. The bifurcation-integration solution expresses the transition from mechanical and thermodynamic equilibrium to a nonequilibrium irreversible state, which is explicitly shown by the nonlinear differential equation with time-dependent coefficients (NDE-TC). The analysis established a new theoretical approach to nonequilibrium irreversible states, thermomechanical dynamics (TMD). The TMD method enables one to obtain thermodynamically consistent and time-dependent progresses of thermodynamic quantities, by employing the bifurcation-integration solutions of NDE-TC. We hope that the basic properties of bifurcation-integration solutions will be studied and investigated further in mathematics, physics, chemistry and nonlinear sciences in general.
文摘In the relentless quest for digital sovereignty, organizations face an unprecedented challenge in safeguarding sensitive information, protecting against cyber threats, and maintaining regulatory compliance. This manuscript unveils a revolutionary blueprint for cyber resilience, empowering organizations to transcend the limitations of traditional cybersecurity paradigms and forge ahead into uncharted territories of data security excellence and frictionless secrets management experience. Enter a new era of cybersecurity innovation and continued excellence. By seamlessly integrating secrets based on logical environments and applications (assets), dynamic secrets management orchestrates and automates the secrets lifecycle management with other platform cohesive integrations. Enterprises can enhance security, streamline operations, fasten development practices, avoid secrets sprawl, and improve overall compliance and DevSecOps practice. This enables the enterprises to enhance security, streamline operations, fasten development & deployment practices, avoid secrets spawls, and improve overall volume in shipping software with paved-road DevSecOps Practices, and improve developers’ productivity. By seamlessly integrating secrets based on logical environments and applications (assets), dynamic secrets management orchestrates and automates the application secrets lifecycle with other platform cohesive integrations. Organizations can enhance security, streamline operations, fasten development & deployment practices, avoid secrets sprawl, and improve overall volume in shipping software with paved-road DevSecOps practices. Most importantly, increases developer productivity.
文摘A thermoelectric generation Stirling engine (TEG-Stirling engine) is discussed by employing a low temperature Stirling engine and the dissipative equation of motion derived from the method of thermomechanical dynamics (TMD). The results and mechanism of axial flux electromagnetic induction (AF-EMI) are applied to a low temperature Stirling engine, resulting in a TEG-Stirling engine. The method of TMD produced thermodynamically consistent and time-dependent physical quantities for the first time, such as internal energy ℰ(t), thermodynamic work Wth(t), the total entropy (heat dissipation) Qd(t)and measure or temperature of a nonequilibrium state T˜(t). The TMD analysis produced a lightweight mechanical system of TEG-Stirling engine which derives electric power from waste heat of temperature (40˚CT100˚C) by a thermoelectric conversion method. An optimal low rotational speed about 30θ′(t)/(2π)60(rpm) is found, applicable to devices for sustainable, clean energy technologies. The stability of a thermal state and angular rotations of TEG-Stirling engine are specifically shown by employing properties of nonequilibrium temperature T˜(t), which is also applied to study optimal fuel-injection and combustion timings of heat engines.
文摘目的建立基于聚合酶链式反应−限制性片段长度多态性(PCR−RFLP)策略,可用于家蝇抗药性相关羧酸酯酶MdαE7 G137D和乙酰胆碱酯酶(AChE)V260L与F407Y突变的分子检测方法。方法2022年6-7月,在四川省内江市资中、威远、隆昌、市中和东兴5个县(市、区),采用诱蝇笼或捕虫网采集家蝇成虫,用无水乙醇保存,带回实验室操作。根据家蝇羧酸酯酶MdαE7和AChE基因序列设计引物,以单只家蝇的基因组DNA为模板,进行家蝇MdαE7基因和AChE编码基因片段的PCR扩增,用限制性内切酶酶切PCR产物,根据酶切产物的电泳检测结果来区分家蝇个体的基因型。结果采用基因特异性引物,可扩增出长度分别为213、170和133 bp的PCR产物MdαE7-137,AChE-260和AChE-407。MdαE7-137经Bst XI酶切后,电泳检测显示26和187 bp 2条条带为137位点敏感纯合子(GG),仅213 bp 1条条带为抗性纯合子(DD),26、187和213 bp 3条条带为杂合子(G/D)。AChE-260经Sa1 I-HF®酶切后,电泳显示170 bp 1条条带的,为AChE 260位点敏感纯合子(VV),显示26和144 bp 2条条带的,为抗性纯合子(LL),显示26、144和170 bp 3条条带的,为杂合子(V/L)。AChE-407经Eco RV-HF®酶切后,电泳条带存在133 bp 1条条带的,为AChE 407位点敏感纯合子(FF),存在31和102 bp 2条条带的,为抗性纯合子(YY),存在31、102和133 bp 3条条带的,为杂合子(F/Y)。结论建立的PCR−RFLP基因分型方法简便、准确性高,可分别用于快速检测野外家蝇种群中抗药性相关的羧酸酯酶MdαE7 G137D、AChE V260L和AchE F407Y突变的频率。
文摘基于反应力场(reactive force field,ReaxFF)的反应分子动力学模拟的结果分析具有挑战性。国际首个ReaxFF MD化学反应分析及可视化工具VARxMD(visulization and analysis of ReaxFF molecular dynamics)可自动生成不同时刻之间完整的化学反应列表,通过物种检索进一步对反应路径进行分类。但VARxMD目前的反应分析针对的是某一确定条件下单一的ReaxFF MD模拟轨迹,利用VARxMD分析获得一次模拟的完整反应列表需要消耗大量计算资源和时间。本文提出基于数据库来储存VARxMD反应分析结果数据,基于数据库检索进一步分析反应的思路,并采用MVVM(model-view-view model)的系统设计模式、结合渐进式框架Vue.js建立了ReaxFF MD模拟的化学反应数据系统ReaxMDDB(reaction database of ReaxFF MD simulation)。系统应用于多个RP-3模型热解和氧化模拟反应数据的结果表明:该系统不仅实现了多个ReaxFF MD模拟的详细反应的统一分析和化学反应的2D分子结构显示,而且可永久保存模拟获得的反应数据集以备后续进一步分析反应机理。ReaxMDDB具有很好的通用性,为认识不同反应模拟所揭示的共性化学反应机理提供了方便的平台。