We present a large deviation theory that characterizes the exponential estimate for rare events in stochastic dynamical systems in the limit of weak noise.We aim to consider a next-to-leading-order approximation for m...We present a large deviation theory that characterizes the exponential estimate for rare events in stochastic dynamical systems in the limit of weak noise.We aim to consider a next-to-leading-order approximation for more accurate calculation of the mean exit time by computing large deviation prefactors with the aid of machine learning.More specifically,we design a neural network framework to compute quasipotential,most probable paths and prefactors based on the orthogonal decomposition of a vector field.We corroborate the higher effectiveness and accuracy of our algorithm with two toy models.Numerical experiments demonstrate its powerful functionality in exploring the internal mechanism of rare events triggered by weak random fluctuations.展开更多
Let(X,φ) be a nonautonomous dynamical system.In this paper,we introduce the notions of packing topological entropy and measure-theoretical upper entropy for nonautonomous dynamical systems.Moreover,we establish the v...Let(X,φ) be a nonautonomous dynamical system.In this paper,we introduce the notions of packing topological entropy and measure-theoretical upper entropy for nonautonomous dynamical systems.Moreover,we establish the variational principle between the packing topological entropy and the measure-theoretical upper entropy.展开更多
Although numerous advances have been made in information technology in the past decades,there is still a lack of progress in information systems dynamics(ISD),owing to the lack of a mathematical foundation needed to d...Although numerous advances have been made in information technology in the past decades,there is still a lack of progress in information systems dynamics(ISD),owing to the lack of a mathematical foundation needed to describe information and the lack of an analytical framework to evaluate information systems.The value of ISD lies in its ability to guide the design,development,application,and evaluation of largescale information system-of-systems(So Ss),just as mechanical dynamics theories guide mechanical systems engineering.This paper reports on a breakthrough in these fundamental challenges by proposing a framework for information space,improving a mathematical theory for information measurement,and proposing a dynamic configuration model for information systems.In this way,it establishes a basic theoretical framework for ISD.The proposed theoretical methodologies have been successfully applied and verified in the Smart Court So Ss Engineering Project of China and have achieved significant improvements in the quality and efficiency of Chinese court informatization.The proposed ISD provides an innovative paradigm for the analysis,design,development,and evaluation of large-scale complex information systems,such as electronic government and smart cities.展开更多
We propose a novel framework for learning a low-dimensional representation of data based on nonlinear dynamical systems,which we call the dynamical dimension reduction(DDR).In the DDR model,each point is evolved via a...We propose a novel framework for learning a low-dimensional representation of data based on nonlinear dynamical systems,which we call the dynamical dimension reduction(DDR).In the DDR model,each point is evolved via a nonlinear flow towards a lower-dimensional subspace;the projection onto the subspace gives the low-dimensional embedding.Training the model involves identifying the nonlinear flow and the subspace.Following the equation discovery method,we represent the vector field that defines the flow using a linear combination of dictionary elements,where each element is a pre-specified linear/nonlinear candidate function.A regularization term for the average total kinetic energy is also introduced and motivated by the optimal transport theory.We prove that the resulting optimization problem is well-posed and establish several properties of the DDR method.We also show how the DDR method can be trained using a gradient-based optimization method,where the gradients are computed using the adjoint method from the optimal control theory.The DDR method is implemented and compared on synthetic and example data sets to other dimension reduction methods,including the PCA,t-SNE,and Umap.展开更多
This article examines the dynamics for stochastic plate equations with linear memory in the case of bounded domain. We investigate the existence of solutions and bounded absorbing set by using the uniform pullback att...This article examines the dynamics for stochastic plate equations with linear memory in the case of bounded domain. We investigate the existence of solutions and bounded absorbing set by using the uniform pullback attractors on the tails estimates, and the asymptotic compactness of the random dynamical system is proved by decomposition method, and then we obtain the existence of a random attractor.展开更多
Eigenstructure assignment using the proportional-plus-derivative feedback controller in a class of secondorder dynamic system is investigated. Simple, general, complete parametric expressions for both the closed-loop ...Eigenstructure assignment using the proportional-plus-derivative feedback controller in a class of secondorder dynamic system is investigated. Simple, general, complete parametric expressions for both the closed-loop eigenvector matrix and the feedback gains are established based on two simple Smith form reductions. The approach utilizes directly the original system data and involves manipulations only on n-dimensional matrices. Furthermore, it reveals all the degrees of freedom which can be further utilized to achieve additional system specifications. An example shows the effect of the proposed approach.展开更多
The aim of this work is to understand better the long time behaviour of asymptotically compact random dynamical systems (RDS), which can be generated by solutions of some stochastic partial differential equations on...The aim of this work is to understand better the long time behaviour of asymptotically compact random dynamical systems (RDS), which can be generated by solutions of some stochastic partial differential equations on unbounded domains. The conceptual analysis for the long time behavior of RDS will be done through some examples. An application of those analysis will be demonstrated through the proof of the existence of random attractors for asymptotically compact dissipative RDS.展开更多
This paper discusses the concept of controllable subspace for open quantum dynamical systems. It is constructively demonstrated that combining structural features of decoherence-free subspaces with the ability to perf...This paper discusses the concept of controllable subspace for open quantum dynamical systems. It is constructively demonstrated that combining structural features of decoherence-free subspaces with the ability to perform open-loop coherent control on open quantum systems will allow decoherence-free subspaces to be controllable. This is in contrast to the observation that open quantum dynamical systems are not open-loop controllable. To a certain extent, this paper gives an alternative control theoretical interpretation on why decoherence-free subspaces can be useful for quantum computation.展开更多
We introduce a new dynamical evolutionary algorithm(DEA) based on the theory of statistical mechanics and investigate the reconstruction problem for the nonlinear dynamical systems using observation data. The conver...We introduce a new dynamical evolutionary algorithm(DEA) based on the theory of statistical mechanics and investigate the reconstruction problem for the nonlinear dynamical systems using observation data. The convergence of the algorithm is discussed. We make the numerical experiments and test our model using the two famous chaotic systems (mainly the Lorenz and Chen systems). The results show the relatively accurate reconstruction of these chaotic systems based on observational data can be obtained. Therefore we may conclude that there are broad prospects using our method to model the nonlinear dynamical systems.展开更多
Traditional biomechanical analyses of human movement are generally derived from linear mathematics.While these methods can be useful in many situations,they do not describe behaviors in human systems that are predomin...Traditional biomechanical analyses of human movement are generally derived from linear mathematics.While these methods can be useful in many situations,they do not describe behaviors in human systems that are predominately nonlinear.For this reason,nonlinear analysis methods based on a dynamical systems approach have become more prevalent in recent literature.These analysis techniques have provided new insights into how systems(1) maintain pattern stability,(2) transition into new states,and(3) are governed by short-and long-term(fractal) correlational processes at different spatio-temporal scales.These different aspects of system dynamics are typically investigated using concepts related to variability,stability,complexity,and adaptability.The purpose of this paper is to compare and contrast these different concepts and demonstrate that,although related,these terms represent fundamentally different aspects of system dynamics.In particular,we argue that variability should not uniformly be equated with stability or complexity of movement.In addition,current dynamic stability measures based on nonlinear analysis methods(such as the finite maximal Lyapunov exponent) can reveal local instabilities in movement dynamics,but the degree to which these local instabilities relate to global postural and gait stability and the ability to resist external perturbations remains to be explored.Finally,systematic studies are needed to relate observed reductions in complexity with aging and disease to the adaptive capabilities of the movement system and how complexity changes as a function of different task constraints.展开更多
In this study, the impulsive predator-prey dynamic systems on time scales calculus are studied. When the system has periodic solution is investigated, and three different conditions have been found, which are necessar...In this study, the impulsive predator-prey dynamic systems on time scales calculus are studied. When the system has periodic solution is investigated, and three different conditions have been found, which are necessary for the periodic solution of the predator-prey dynamic systems with Beddington-DeAngelis type functional response. For this study the main tools are time scales calculus and coincidence degree theory. Also the findings are beneficial for continuous case, discrete case and the unification of both these cases. Additionally, unification of continuous and discrete case is a good example for the modeling of the life cycle of insects.展开更多
The problem of linear time-varying(LTV) system modal analysis is considered based on time-dependent state space representations, as classical modal analysis of linear time-invariant systems and current LTV system mo...The problem of linear time-varying(LTV) system modal analysis is considered based on time-dependent state space representations, as classical modal analysis of linear time-invariant systems and current LTV system modal analysis under the "frozen-time" assumption are not able to determine the dynamic stability of LTV systems. Time-dependent state space representations of LTV systems are first introduced, and the corresponding modal analysis theories are subsequently presented via a stabilitypreserving state transformation. The time-varying modes of LTV systems are extended in terms of uniqueness, and are further interpreted to determine the system's stability. An extended modal identification is proposed to estimate the time-varying modes, consisting of the estimation of the state transition matrix via a subspace-based method and the extraction of the time-varying modes by the QR decomposition. The proposed approach is numerically validated by three numerical cases, and is experimentally validated by a coupled moving-mass simply supported beam exper- imental case. The proposed approach is capable of accurately estimating the time-varying modes, and provides anew way to determine the dynamic stability of LTV systems by using the estimated time-varying modes.展开更多
The purpose of the present paper is to study the entropy hs(Ф) of a quantum dynamical systems Ф = ( L, s, Ф), where s is a bayessian state on an orthomodular lattice L. Having introduced the notion of entropy h...The purpose of the present paper is to study the entropy hs(Ф) of a quantum dynamical systems Ф = ( L, s, Ф), where s is a bayessian state on an orthomodular lattice L. Having introduced the notion of entropy hs( Ф, A) of partition A of a Boolean algebra B with respect to a state s and a state preserving homomorphism Ф, we prove a few results on that, define the entropy of a dynamical system hs(Ф), and show its invariance. The concept of sufficient families is also given and we establish that hs (Ф) comes out to be equal to the supremum of hs (Ф,A), where A varies over any sufficient family. The present theory has then been extended to the quantum dynamical system ( L, s, Ф), which as an effect of the theory of commutators and Bell inequalities can equivalently be replaced by the dynamical system (B, s0, Ф), where B is a Boolean algebra and so is a state on B.展开更多
Two methods of stability analysis of systems described by dynamical equations are being considered. They are based on an analysis of eigenvalues spectrum for the evolutionary matrix or the spectral equation and they a...Two methods of stability analysis of systems described by dynamical equations are being considered. They are based on an analysis of eigenvalues spectrum for the evolutionary matrix or the spectral equation and they allow determining the conditions of stability and instability, as well as the possibility of chaotic behavior of systems in case of a stability loss. The methods are illustrated for nonlinear Lorenz and Rossler model problems.展开更多
A control method is presented for the problem of decentralized stabilizationof large scale nonlinear systems by designing robust controllers, in the sense of L2-gaincontrol, for each subsystem. An uncertainty toleranc...A control method is presented for the problem of decentralized stabilizationof large scale nonlinear systems by designing robust controllers, in the sense of L2-gaincontrol, for each subsystem. An uncertainty tolerance matrix is defined to characterize thedesired robustness leve1 of the overall system. It is then identified that, for a given uncer-tainty tolerance matrix, the design problem is related to the existence of a smooth Positivedefinite solution to a modified Ham ilton -Jacobi - Bellman (H-J-B ) equa tion. The solution,if exists, is exactly the payoff function in terms of the game theory. A decentralized statefeedback law is duly designed, which, under the weak assumption of the zero-state ob-servability on the system, renders the overall closed-loop system aspoptotically stable withan explicitly expressed stability region. Finally, relation between the payoff function andthe uncertainty tolerance matrix is provided, highlighting the 'knowing less and payingmore' philosophy.展开更多
Finite time stability and stabilization are studied for hy-brid dynamic systems. By combining multiple Lyapunov function and finite time Lyapunov function, a sufficient condition of finite time stability is given for ...Finite time stability and stabilization are studied for hy-brid dynamic systems. By combining multiple Lyapunov function and finite time Lyapunov function, a sufficient condition of finite time stability is given for the system. Compared with the previ-ous works, our results have less conservativeness. Furthermore, based on the state partition of continuous and resetting parts of system, a hybrid feedback controller is constructed, which stabi-lizes the closed-loop systems in finite time. Finally, a numerical example is provided to demonstrate the effectiveness of the pro-posed method.展开更多
Based on the Magnus integrator method established in linear dynamic systems, an efficiently improved modified Magnus integrator method was proposed for the second-order dynamic systems with time-dependent high frequen...Based on the Magnus integrator method established in linear dynamic systems, an efficiently improved modified Magnus integrator method was proposed for the second-order dynamic systems with time-dependent high frequencies. Firstly, the secondorder dynamic system was reformulated as the first-order system and the frame of reference was transfered by introducing new variables so that highly oscillatory behaviour inherits from the entries in the meantime. Then the modified Magnus integrator method based on local linearization was appropriately designed for solving the above new form and some improved also were presented. Finally, numerical examples show that the proposed methods appear to be quite adequate for integration for highly oscillatory dynamic systems including Hamiltonian systems problem with long time and effectiveness.展开更多
This paper uses Poincaré formalism to extend the Levi-Civita theorem to cope with nonholonomic sys- tems admitting certain invariant relations whose equations of motion involve constraint multipliers.Sufficient c...This paper uses Poincaré formalism to extend the Levi-Civita theorem to cope with nonholonomic sys- tems admitting certain invariant relations whose equations of motion involve constraint multipliers.Sufficient condi- tions allowing such extension are obtained and,as an application of the theory a generalization of Routh's motion is presented.展开更多
We construct new unidirectional coupling schemes for autonomous and nonautonomous drive systems, respectively. Each of these schemes makes the state of the response system asymptotically approach the first-order deriv...We construct new unidirectional coupling schemes for autonomous and nonautonomous drive systems, respectively. Each of these schemes makes the state of the response system asymptotically approach the first-order derivative of the state of the driver. From the point of view of geometry, the first-order derivative of the state of the driver can be viewed as a tangent vector of the trajectory of the driver, so the proposed schemes are named tangent response schemes. Numerical simulations of the Lorenz system and the forced Duffing oscillator verify the validity of the tangent response schemes. We further point out that the tangent response can be interpreted as a special kind of generalised synchronisation, thereby explaining why the response system can exhibit rich geometrical structures in its state space.展开更多
Zoning in ore bodies, ore deposits and ore regions are recognized as temporal-spatial structures generated by the dynamics of ore- forming processes. Viewed from the theory of dissipative structures, ore zoning is a k...Zoning in ore bodies, ore deposits and ore regions are recognized as temporal-spatial structures generated by the dynamics of ore- forming processes. Viewed from the theory of dissipative structures, ore zoning is a kind of self-organization phenomenon occurring in far from-equilibrium geochemical dynamic systems. Therefore,kinetic and dynamic approaches must be taken to reveal the mechanisms of ore zoning. Two dominant coupling processes leading to ore zoning——reaction-transport feedbacks and double-diffusive convection——are discussed.展开更多
基金Project supported by the Natural Science Foundation of Jiangsu Province (Grant No.BK20220917)the National Natural Science Foundation of China (Grant Nos.12001213 and 12302035)。
文摘We present a large deviation theory that characterizes the exponential estimate for rare events in stochastic dynamical systems in the limit of weak noise.We aim to consider a next-to-leading-order approximation for more accurate calculation of the mean exit time by computing large deviation prefactors with the aid of machine learning.More specifically,we design a neural network framework to compute quasipotential,most probable paths and prefactors based on the orthogonal decomposition of a vector field.We corroborate the higher effectiveness and accuracy of our algorithm with two toy models.Numerical experiments demonstrate its powerful functionality in exploring the internal mechanism of rare events triggered by weak random fluctuations.
基金the National Natural Science Foundation of China (11871188, 12031019)。
文摘Let(X,φ) be a nonautonomous dynamical system.In this paper,we introduce the notions of packing topological entropy and measure-theoretical upper entropy for nonautonomous dynamical systems.Moreover,we establish the variational principle between the packing topological entropy and the measure-theoretical upper entropy.
基金supported by the National Key Research and Development Program of China(2016YFC0800801)the Research and Innovation Project of China University of Political Science and Law(10820356)the Fundamental Research Funds for the Central Universities。
文摘Although numerous advances have been made in information technology in the past decades,there is still a lack of progress in information systems dynamics(ISD),owing to the lack of a mathematical foundation needed to describe information and the lack of an analytical framework to evaluate information systems.The value of ISD lies in its ability to guide the design,development,application,and evaluation of largescale information system-of-systems(So Ss),just as mechanical dynamics theories guide mechanical systems engineering.This paper reports on a breakthrough in these fundamental challenges by proposing a framework for information space,improving a mathematical theory for information measurement,and proposing a dynamic configuration model for information systems.In this way,it establishes a basic theoretical framework for ISD.The proposed theoretical methodologies have been successfully applied and verified in the Smart Court So Ss Engineering Project of China and have achieved significant improvements in the quality and efficiency of Chinese court informatization.The proposed ISD provides an innovative paradigm for the analysis,design,development,and evaluation of large-scale complex information systems,such as electronic government and smart cities.
文摘We propose a novel framework for learning a low-dimensional representation of data based on nonlinear dynamical systems,which we call the dynamical dimension reduction(DDR).In the DDR model,each point is evolved via a nonlinear flow towards a lower-dimensional subspace;the projection onto the subspace gives the low-dimensional embedding.Training the model involves identifying the nonlinear flow and the subspace.Following the equation discovery method,we represent the vector field that defines the flow using a linear combination of dictionary elements,where each element is a pre-specified linear/nonlinear candidate function.A regularization term for the average total kinetic energy is also introduced and motivated by the optimal transport theory.We prove that the resulting optimization problem is well-posed and establish several properties of the DDR method.We also show how the DDR method can be trained using a gradient-based optimization method,where the gradients are computed using the adjoint method from the optimal control theory.The DDR method is implemented and compared on synthetic and example data sets to other dimension reduction methods,including the PCA,t-SNE,and Umap.
文摘This article examines the dynamics for stochastic plate equations with linear memory in the case of bounded domain. We investigate the existence of solutions and bounded absorbing set by using the uniform pullback attractors on the tails estimates, and the asymptotic compactness of the random dynamical system is proved by decomposition method, and then we obtain the existence of a random attractor.
文摘Eigenstructure assignment using the proportional-plus-derivative feedback controller in a class of secondorder dynamic system is investigated. Simple, general, complete parametric expressions for both the closed-loop eigenvector matrix and the feedback gains are established based on two simple Smith form reductions. The approach utilizes directly the original system data and involves manipulations only on n-dimensional matrices. Furthermore, it reveals all the degrees of freedom which can be further utilized to achieve additional system specifications. An example shows the effect of the proposed approach.
基金the National NSFC under grant No.50579022the Foundation of Pre-973 Program of China under grant No.2004CCA02500+1 种基金the SRF for the ROCS,SEMthe Talent Recruitment Foundation of HUST
文摘The aim of this work is to understand better the long time behaviour of asymptotically compact random dynamical systems (RDS), which can be generated by solutions of some stochastic partial differential equations on unbounded domains. The conceptual analysis for the long time behavior of RDS will be done through some examples. An application of those analysis will be demonstrated through the proof of the existence of random attractors for asymptotically compact dissipative RDS.
基金The project supported by National Natural Science Foundation of China under Grant No.60674040National Natural Science Foundation for Distinguished Young Scholars under Grant No.60225015
文摘This paper discusses the concept of controllable subspace for open quantum dynamical systems. It is constructively demonstrated that combining structural features of decoherence-free subspaces with the ability to perform open-loop coherent control on open quantum systems will allow decoherence-free subspaces to be controllable. This is in contrast to the observation that open quantum dynamical systems are not open-loop controllable. To a certain extent, this paper gives an alternative control theoretical interpretation on why decoherence-free subspaces can be useful for quantum computation.
基金Supported by the National Natural Science Foun-dation of China (60133010) the Natural Science Foundation ofHubei Province (2004ABA011)
文摘We introduce a new dynamical evolutionary algorithm(DEA) based on the theory of statistical mechanics and investigate the reconstruction problem for the nonlinear dynamical systems using observation data. The convergence of the algorithm is discussed. We make the numerical experiments and test our model using the two famous chaotic systems (mainly the Lorenz and Chen systems). The results show the relatively accurate reconstruction of these chaotic systems based on observational data can be obtained. Therefore we may conclude that there are broad prospects using our method to model the nonlinear dynamical systems.
文摘Traditional biomechanical analyses of human movement are generally derived from linear mathematics.While these methods can be useful in many situations,they do not describe behaviors in human systems that are predominately nonlinear.For this reason,nonlinear analysis methods based on a dynamical systems approach have become more prevalent in recent literature.These analysis techniques have provided new insights into how systems(1) maintain pattern stability,(2) transition into new states,and(3) are governed by short-and long-term(fractal) correlational processes at different spatio-temporal scales.These different aspects of system dynamics are typically investigated using concepts related to variability,stability,complexity,and adaptability.The purpose of this paper is to compare and contrast these different concepts and demonstrate that,although related,these terms represent fundamentally different aspects of system dynamics.In particular,we argue that variability should not uniformly be equated with stability or complexity of movement.In addition,current dynamic stability measures based on nonlinear analysis methods(such as the finite maximal Lyapunov exponent) can reveal local instabilities in movement dynamics,but the degree to which these local instabilities relate to global postural and gait stability and the ability to resist external perturbations remains to be explored.Finally,systematic studies are needed to relate observed reductions in complexity with aging and disease to the adaptive capabilities of the movement system and how complexity changes as a function of different task constraints.
文摘In this study, the impulsive predator-prey dynamic systems on time scales calculus are studied. When the system has periodic solution is investigated, and three different conditions have been found, which are necessary for the periodic solution of the predator-prey dynamic systems with Beddington-DeAngelis type functional response. For this study the main tools are time scales calculus and coincidence degree theory. Also the findings are beneficial for continuous case, discrete case and the unification of both these cases. Additionally, unification of continuous and discrete case is a good example for the modeling of the life cycle of insects.
基金Supported by the China Scholarship Council,National Natural Science Foundation of China(Grant No.11402022)the Interuniversity Attraction Poles Programme of the Belgian Science Policy Office(DYSCO)+1 种基金the Fund for Scientific Research–Flanders(FWO)the Research Fund KU Leuven
文摘The problem of linear time-varying(LTV) system modal analysis is considered based on time-dependent state space representations, as classical modal analysis of linear time-invariant systems and current LTV system modal analysis under the "frozen-time" assumption are not able to determine the dynamic stability of LTV systems. Time-dependent state space representations of LTV systems are first introduced, and the corresponding modal analysis theories are subsequently presented via a stabilitypreserving state transformation. The time-varying modes of LTV systems are extended in terms of uniqueness, and are further interpreted to determine the system's stability. An extended modal identification is proposed to estimate the time-varying modes, consisting of the estimation of the state transition matrix via a subspace-based method and the extraction of the time-varying modes by the QR decomposition. The proposed approach is numerically validated by three numerical cases, and is experimentally validated by a coupled moving-mass simply supported beam exper- imental case. The proposed approach is capable of accurately estimating the time-varying modes, and provides anew way to determine the dynamic stability of LTV systems by using the estimated time-varying modes.
文摘The purpose of the present paper is to study the entropy hs(Ф) of a quantum dynamical systems Ф = ( L, s, Ф), where s is a bayessian state on an orthomodular lattice L. Having introduced the notion of entropy hs( Ф, A) of partition A of a Boolean algebra B with respect to a state s and a state preserving homomorphism Ф, we prove a few results on that, define the entropy of a dynamical system hs(Ф), and show its invariance. The concept of sufficient families is also given and we establish that hs (Ф) comes out to be equal to the supremum of hs (Ф,A), where A varies over any sufficient family. The present theory has then been extended to the quantum dynamical system ( L, s, Ф), which as an effect of the theory of commutators and Bell inequalities can equivalently be replaced by the dynamical system (B, s0, Ф), where B is a Boolean algebra and so is a state on B.
文摘Two methods of stability analysis of systems described by dynamical equations are being considered. They are based on an analysis of eigenvalues spectrum for the evolutionary matrix or the spectral equation and they allow determining the conditions of stability and instability, as well as the possibility of chaotic behavior of systems in case of a stability loss. The methods are illustrated for nonlinear Lorenz and Rossler model problems.
文摘A control method is presented for the problem of decentralized stabilizationof large scale nonlinear systems by designing robust controllers, in the sense of L2-gaincontrol, for each subsystem. An uncertainty tolerance matrix is defined to characterize thedesired robustness leve1 of the overall system. It is then identified that, for a given uncer-tainty tolerance matrix, the design problem is related to the existence of a smooth Positivedefinite solution to a modified Ham ilton -Jacobi - Bellman (H-J-B ) equa tion. The solution,if exists, is exactly the payoff function in terms of the game theory. A decentralized statefeedback law is duly designed, which, under the weak assumption of the zero-state ob-servability on the system, renders the overall closed-loop system aspoptotically stable withan explicitly expressed stability region. Finally, relation between the payoff function andthe uncertainty tolerance matrix is provided, highlighting the 'knowing less and payingmore' philosophy.
基金supported by the National Natural Science Foundation of China (60974139)
文摘Finite time stability and stabilization are studied for hy-brid dynamic systems. By combining multiple Lyapunov function and finite time Lyapunov function, a sufficient condition of finite time stability is given for the system. Compared with the previ-ous works, our results have less conservativeness. Furthermore, based on the state partition of continuous and resetting parts of system, a hybrid feedback controller is constructed, which stabi-lizes the closed-loop systems in finite time. Finally, a numerical example is provided to demonstrate the effectiveness of the pro-posed method.
基金Project supported by the National Natural Science Foundation of China (No.10572119)Program for New Century Excellent Talent of Ministry of Education of China (No.NCET-04-0958)the Open Foundation of State Key Laboratory of Structural Analysis of Industrial Equipmentthe Doctorate Foundation of Northwestern Polytechnical University
文摘Based on the Magnus integrator method established in linear dynamic systems, an efficiently improved modified Magnus integrator method was proposed for the second-order dynamic systems with time-dependent high frequencies. Firstly, the secondorder dynamic system was reformulated as the first-order system and the frame of reference was transfered by introducing new variables so that highly oscillatory behaviour inherits from the entries in the meantime. Then the modified Magnus integrator method based on local linearization was appropriately designed for solving the above new form and some improved also were presented. Finally, numerical examples show that the proposed methods appear to be quite adequate for integration for highly oscillatory dynamic systems including Hamiltonian systems problem with long time and effectiveness.
文摘This paper uses Poincaré formalism to extend the Levi-Civita theorem to cope with nonholonomic sys- tems admitting certain invariant relations whose equations of motion involve constraint multipliers.Sufficient condi- tions allowing such extension are obtained and,as an application of the theory a generalization of Routh's motion is presented.
文摘We construct new unidirectional coupling schemes for autonomous and nonautonomous drive systems, respectively. Each of these schemes makes the state of the response system asymptotically approach the first-order derivative of the state of the driver. From the point of view of geometry, the first-order derivative of the state of the driver can be viewed as a tangent vector of the trajectory of the driver, so the proposed schemes are named tangent response schemes. Numerical simulations of the Lorenz system and the forced Duffing oscillator verify the validity of the tangent response schemes. We further point out that the tangent response can be interpreted as a special kind of generalised synchronisation, thereby explaining why the response system can exhibit rich geometrical structures in its state space.
文摘Zoning in ore bodies, ore deposits and ore regions are recognized as temporal-spatial structures generated by the dynamics of ore- forming processes. Viewed from the theory of dissipative structures, ore zoning is a kind of self-organization phenomenon occurring in far from-equilibrium geochemical dynamic systems. Therefore,kinetic and dynamic approaches must be taken to reveal the mechanisms of ore zoning. Two dominant coupling processes leading to ore zoning——reaction-transport feedbacks and double-diffusive convection——are discussed.