The Young’s modulus was measured at high temperatures by impulse excitation of vibration method,and the effects of heating rate,holding time and temperature cycle on the test results were analyzed.The results show th...The Young’s modulus was measured at high temperatures by impulse excitation of vibration method,and the effects of heating rate,holding time and temperature cycle on the test results were analyzed.The results show that the heating rate has obvious effect on the high temperature Young’s modulus of the green body,but has no obvious effect on that of the sintered products;the holding time of the heating process has no regular effect on the Young’s modulus,and the effect varies with the different products at a certain temperature;the method can also be used to test the Young’s modulus during cooling process.展开更多
To enhance the Young’s modulus(E)and strength of titanium alloys,we designed titanium matrix composites with intercon-nected microstructure based on the Hashin-Shtrikman theory.According to the results,the in-situ re...To enhance the Young’s modulus(E)and strength of titanium alloys,we designed titanium matrix composites with intercon-nected microstructure based on the Hashin-Shtrikman theory.According to the results,the in-situ reaction yielded an interconnected microstructure composed of Ti_(2)C particles when the Ti_(2)C content reached 50vol%.With widths of 10 and 230 nm,the intraparticle Ti lamellae in the prepared composite exhibited a bimodal size distribution due to precipitation and the unreacted Ti phase within the grown Ti_(2)C particles.The composites with interconnected microstructure attained superior properties,including E of 174.3 GPa and ultimate flexural strength of 1014 GPa.Compared with that of pure Ti,the E of the composite was increased by 55% due to the high Ti_(2)C content and interconnected microstructure.The outstanding strength resulted from the strong interfacial bonding,load-bearing capacity of interconnected Ti_(2)C particles,and bimodal intraparticle Ti lamellae,which minimized the average crack driving force.Interrupted flexural tests revealed preferential crack initiation along the{001}cleavage plane and grain boundary of Ti_(2)C in the region with the highest tensile stress.In addition,the propagation can be efficiently inhibited by interparticle Ti grains,which prevented the brittle fracture of the composites.展开更多
To get the quantitive value of abnormal biological tissues, an inverse algorithm about the Young's modulus based on the boundary extraction and the image registration technologies is proposed. With the known displace...To get the quantitive value of abnormal biological tissues, an inverse algorithm about the Young's modulus based on the boundary extraction and the image registration technologies is proposed. With the known displacements of boundary tissues and the force distribution, the Young's modulus is calculated by constructing the unit system and the inverse finite element method (IFEM). Then a tough range of the modulus for the whole tissue is estimated referring the value obtained before. The improved particle swarm optimizer (PSO) method is adopted to calculate the whole Yong's modulus distribution. The presented algorithm overcomes some limitations in other Young's modulus reconstruction methods and relaxes the displacements and force boundary condition requirements. The repetitious numerical simulation shows that errors in boundary displacement are not very sensitive to the estimation of next process; a final feasible solution is obtained by the improved PSO method which is close to the theoretical values obtained during searching in an extensive range.展开更多
In gas turbines, thermal barrier coatings (TBCs) applied by air plasma spraying are widely used to lower the temperature of hot components. To analyze the characteristics of TBCs such as residual stress, bond streng...In gas turbines, thermal barrier coatings (TBCs) applied by air plasma spraying are widely used to lower the temperature of hot components. To analyze the characteristics of TBCs such as residual stress, bond strength, fracture toughness, and crack propagation ratio, the Young's modulus and Poisson's ratio are important parameters. For TBC is a brittle and thin film, it is desirable to evaluate those properties while the coatings are bonded to a substrate. An atmospheric plasma spray MCrAIY bond coat and Yttria stabilized zirconia (YSZ) top coat are deposited onto a nickel-base superalloy GH150 substrate. The Young's modulus and Poisson's ratio are measured by cantilever beam bending with NDI. The method will be developed to test the Young' s modulus and Poisson ratio of other multilayer systems.展开更多
A convenient technique is reported in this note for measuring elastic modulus of extremely soft material for cellular adhesion. Specimens of bending cylinder under gravity are used to avoid contact problem between tes...A convenient technique is reported in this note for measuring elastic modulus of extremely soft material for cellular adhesion. Specimens of bending cylinder under gravity are used to avoid contact problem between testing device and sample, and a beam model is presented for evaluating the curvatures of gel beams with large elastic deformation. A self-adaptive algorithm is also proposed to search for the best estimation of gels' elastic moduli by comparing the experimental bending curvatures with those computed from the beam model with preestimated moduli. Application to the measurement of the property of polyacrylamide gels indi- cates that the material compliance varies with the concentrations of bis-acrylamide, and the gels become softer after being immersed in a culture medium for a period of time, no matter to what extent they are polymerized.展开更多
Like other manufacturing techniques,plasma spraying has also a non-linear behavior because of the contribution of many coating variables.This characteristic results in finding optimal factor combination difficult.Subs...Like other manufacturing techniques,plasma spraying has also a non-linear behavior because of the contribution of many coating variables.This characteristic results in finding optimal factor combination difficult.Subsequently,the issue can be solved through effective and strategic statistical procedures integrated with systematic experimental data.Plasma spray parameters such as power,stand-off distance and powder feed rate have significant influence on coating characteristics like Young’s modulus.This paper presents the use of statistical techniques in specifically response surface methodology(RSM),analysis of variance,and regression analysis to develop empirical relationship to predict Young’s modulus of plasma-sprayed alumina coatings.The developed empirical relationships can be effectively used to predict Young’s modulus of plasma-sprayed alumina coatings at 95%confidence level.Response graphs and contour plots were constructed to identify the optimum plasma spray parameters to attain maximum Young’s modulus in alumina coatings.A linear regression relationship was established between porosity and Young’s modulus of the alumina coatings.展开更多
Young′s Modulus of concrete is studied on the basis of triaxial compressive experiments. The authors proposed two empirical equations to calculate its static Young′s modulus and dynamic Young′s modulus when dynamic...Young′s Modulus of concrete is studied on the basis of triaxial compressive experiments. The authors proposed two empirical equations to calculate its static Young′s modulus and dynamic Young′s modulus when dynamic Poisson ratio μ d varies nearby 0.20.P wave velocity and elastic modulus have the same varying tendency as letter N. μ,μ d decrease with the increase of loading rate and μ d has a great effect on the parameters E d and E D.展开更多
Polymer layers adsorbed to a surface or in a confined environment often change their mechanical properties. There is even the possibility of solidification of the confined layer. To judge the stiffness of such a layer...Polymer layers adsorbed to a surface or in a confined environment often change their mechanical properties. There is even the possibility of solidification of the confined layer. To judge the stiffness of such a layer, we used the Hertz model to calculate the Young's modulus of the polymer layer in the confinement of AFM experiments with silicon nitride tip with a radius of curvature ofR ≈ 50 nm and a glass sphere attached to the cantilever R =5 μm. Since there is no visible indentation of the layer in the AFM experiments, the layer is either penetrated very easily, or the indentation is too small to be seen in a force curve. The latter would be the case for a polymer layer with a Young's modulus above 4 × 10^8 Pa in case of an experiment with a silicon nitride tip and 4×10^5 Pa in case of a glass sphere.展开更多
In 1805, Thomas Young was the first to propose an equation(Young's equation) to predict the value of the equilibrium contact angle of a liquid on a solid. On the basis of our predecessors, we further clarify that ...In 1805, Thomas Young was the first to propose an equation(Young's equation) to predict the value of the equilibrium contact angle of a liquid on a solid. On the basis of our predecessors, we further clarify that the contact angle in Young's equation refers to the super-nano contact angle. Whether the equation is applicable to nanoscale systems remains an open question. Zhu et al. [College Phys. 4 7(1985)] obtained the most simple and convenient approximate formula, known as the Zhu–Qian approximate formula of Young's equation. Here, using molecular dynamics simulation, we test its applicability for nanodrops. Molecular dynamics simulations are performed on argon liquid cylinders placed on a solid surface under a temperature of 90 K, using Lennard–Jones potentials for the interaction between liquid molecules and between a liquid molecule and a solid molecule with the variable coefficient of strength a. Eight values of a between 0.650 and 0.825 are used. By comparison of the super-nano contact angles obtained from molecular dynamics simulation and the Zhu–Qian approximate formula of Young's equation, we find that it is qualitatively applicable for nanoscale systems.展开更多
The flat cylindrical indentation tests with different sizes of punch radius were investigated using finite element method (FEM) aimed to reveal the effect of punch size on the indentation behavior of the film/substr...The flat cylindrical indentation tests with different sizes of punch radius were investigated using finite element method (FEM) aimed to reveal the effect of punch size on the indentation behavior of the film/substrate system. Based on the FEM results analysis, two methods was proposed to separate film's reduced Young's modulus from a film/substrate system. The first method was based on a new weight function that quantifies film's and substrate's contributions to the overall mechanical properties of the film/substrate system in the flat cylindrical indentation test. The second method, a numerical approach, including fitting and extrapolation procedures was put forward. Both of the results from the two methods showed a reasonable agreement with the one input FE model. At last, the effect of maximum indentation depth and the surface micro-roughness of the thin film on the reduced Young's modulus of the film/substrate system were discussed. The methods proposed in the present study provide some new conceptions on evaluating other properties of thin films, e.g. creep, for which a flat-ended punch is also employed.展开更多
The elastic-plastic indentation properties of materials with varying ratio of hardness to Young’s modulus(H/E) were analyzed with the finite element method. And the indentation stress fields of materials with varying...The elastic-plastic indentation properties of materials with varying ratio of hardness to Young’s modulus(H/E) were analyzed with the finite element method. And the indentation stress fields of materials with varying ratio H/E on the surface were studied by the experiment. The results show that the penetration depth, contact radius, plastic pile-up and the degree of elastic recovery depend strongly on the ratio H/E. Moreover, graphs were established to describe the relationship between the elastic-plastic indentation parameters and H/E. The established graphs can be used to predict the H/E of materials when compared with experimental data.展开更多
Based on the Hertzian granular contact mechanics model, the paper built up a Macroscopic Young’s Elastic Modulus of particle/granular packing rock layers, and built up a ties to connecting Young’s Elastic Modulus of...Based on the Hertzian granular contact mechanics model, the paper built up a Macroscopic Young’s Elastic Modulus of particle/granular packing rock layers, and built up a ties to connecting Young’s Elastic Modulus of sand particle in Meso and the Macroscopic Young’s Modulus of granular packing rock layers. The Macroscopic Young’s Modulus of granular packing rock layers is far less than the Young’s Modulus of sand particle. The Macroscopic Young’s Modulus of granular packing rock layers is proportioned to the powers of 1/3 of the vertical contact force of sand particles. The Macroscopic Young’s Modulus is inversely proportional to particle diameter. The paper calculated the vertical contact force of five types aligning mode of the particles. When equal stress, the increased of the coordination number lead to the decrease of the contact force fn, this lead to the coordination number is an inverse proportion to Macroscopic Young’s Modulus. But the larger coordination number change only means very little Macroscopic Young’s Modulus change.展开更多
The effect of mechanical strength of the dispersed particle gel(DPG)on its macro plugging performance is significant,however,little study has been reported.In this paper,DPG particles with different mechanical strengt...The effect of mechanical strength of the dispersed particle gel(DPG)on its macro plugging performance is significant,however,little study has been reported.In this paper,DPG particles with different mechanical strengths were obtained by mechanical shearing of bulk gels prepared with different formula.Young’s moduli of DPG particles on the micro and nano scales were measured by atomic force microscope for the first time.The mapping relationship among the formula of bulk gel,the Young’s moduli of the DPG particles and the final plugging performance were established.The results showed that when the Young’s moduli of the DPG particles increased from 82 to 328 Pa,the plugging rate increased significantly from 91.46%to 97.10%due to the distinctly enhanced stacking density and strength at this range.While when the Young’s moduli of the DPG particles surpassed 328 Pa,the further increase of plugging rate with the Young’s moduli of the DPG particles became insignificant.These results indicated that the improvement of plugging rate was more efficient by adjusting the Young’s moduli of the DPG particles within certain ranges,providing guidance for improving the macroscopic application properties of DPG systems in reservoir heterogeneity regulation.展开更多
It is difficult to establish structure-property relationships in a defective solid because of its inhomogeneous-geometry microstructure caused by defects. In the present research, the effects of pores and cracks on th...It is difficult to establish structure-property relationships in a defective solid because of its inhomogeneous-geometry microstructure caused by defects. In the present research, the effects of pores and cracks on the Young’s modulus of a defective solid are studied. Based on the law of the conservation of energy, mathematical formulations are proposed to indicate how the shape, size, and distribution of defects affect the effective Young’s modulus. In this approach, detailed equations are illustrated to represent the shape and size of defects on the effective Young’s modulus. Different from the results obtained from the traditional empirical analyses, mixture law or statistical method, for the first time, our results from the finite element method (FEM) and strict analytical calculation show that the influence of pore radius and crack length on the effective Young’s modulus can be quantified. It is found that the longest crack in a typical microstructure of ceramic coating dominates the contribution of the effective Young’s modulus in the vertical direction of the crack.展开更多
Introduction: To investigate a long-term in vivo deterioration of polymethylmethacrylate (PMMA) bone cement over time, we evaluated retrieved PMMA cement in terms of chemical elements presenting in the cement using en...Introduction: To investigate a long-term in vivo deterioration of polymethylmethacrylate (PMMA) bone cement over time, we evaluated retrieved PMMA cement in terms of chemical elements presenting in the cement using energy dispersive analysis of X-rays;Knoop hardness;and the Young’s modulus using scanning acoustic microscopy. Materials and Methods: For mechanical evaluation, we could neglect the influences of entrapped air bubbles or blood by the use of small specimens. The study was based on thirteen cement samples (six used in the acetabulum and seven in the femur) derived from eight patients (age at revision surgery: mean 72.5, range 68 to 79). All of these samples were Simplex-P?cement. They were functioning well at least ten years after the previous surgery. Duration until revision surgery was ranged 12 to 25 years (average, 17.4 years). The reason for revision was aseptic mechanical loosening. Twenty samples of Simplex-Preg;cement were served by manually mixing as a control. Results: The average of the hardness of the cement was 17.0 ± 1.2 (range, 13.4-20.6). In the control, the hardness was 17.8 ± 1.5 (range, 14.0-24.6). There was no significant difference between these values. The mean of Young’s modulus of the cement was 5.61 ± 0.19 GPa (range, 5.09-6.10). In the control, the modulus was 6.04 ± 0.13 GPa (range, 5.68-6.45). Although the modulus was significantly less than that of the control, there was only 7% decrease in average between twelve and twenty-five years in vivo. Conclusions: Our results suggest that long-term implantation and functional loading in vivo may not be the limiting factor in the mechanical integrity of the bone cement.展开更多
In this paper, we will study the most important effects in the nano-scale resonator: the coupling effect of temperature and strain rate, and the non-Fourier effect in heat conduction. A solution for the generalized th...In this paper, we will study the most important effects in the nano-scale resonator: the coupling effect of temperature and strain rate, and the non-Fourier effect in heat conduction. A solution for the generalized thermoelastic vibration of nano-resonator induced by thermal loading has been developed. The Young’s modulus is taken as a linear function of the reference temperature. The effects of the thermal loading and the reference temperature in all the studied fields have been studied and represented in graphs with some comparisons. The Young’s modulus makes significant effects on all the studied fields where the values of the temperature, the vibration of the deflection, stress, displacement, strain, stress-strain energy increase when the Young’s modulus has taken to be variable.展开更多
Twist structures have diverse applications, ranging from dragline, electrical cable, and intelligent structure. Among these applications, tension deformation can't be avoided during the fabrication and working proces...Twist structures have diverse applications, ranging from dragline, electrical cable, and intelligent structure. Among these applications, tension deformation can't be avoided during the fabrication and working processes, which often leads to the twist structure rotation (called untwisting effect) and twist pitch increasing. As a consequence, this untwisting behavior has a large effect on the effective Young's modulus. In this paper, we present an improved model based on the classical Costello's theory to predict the effective Young's modulus of the basic structure, twisted by three same copper strands under cyclic loading. Series of experiments were carried out to verify the present model taking into account the untwisting effect. The experimental results have better agreements with the presented model than the common Costello's model.展开更多
Dynamic elastic parameters of coal are closely linked to crack characteristics and are lithology indicators in seismic exploration. This experimental study measured ultrasonic wave velocity of coal samples considering...Dynamic elastic parameters of coal are closely linked to crack characteristics and are lithology indicators in seismic exploration. This experimental study measured ultrasonic wave velocity of coal samples considering both parallel(90°) and perpendicular(0°) to bedding planes, and then calculated the dynamic elastic parameters(Edand ld) and their anisotropy values(AEdand Ald). The variations of Edand ld,as well as AEdand Aldwere analyzed under various confining stresses. The results show that: Firstly, a critical confining pressure exists, and significant variation in the parameters can be seen below this point and weak variation appears above it. Secondly, a positive correlation exists between Edand the square of P-wave velocity(VP2), and between AEdand the P-wave velocity anisotropy(AEP) as well; however, there is no clear correlation between ldand P-wave velocity(VP). Thirdly, according to the major controlling factors of anisotropy, the coal samples with different Edand ldas well as AEdand Aldcan be divided into two types: one is mainly controlled by bedding and cracks and the other one is mainly controlled by differences of mineral compositions in directions. Consequently, this study can provide theoretical basis for future research on the dynamic elastic parameters and anisotropy of coal.展开更多
A thorough understanding on the mechanical properties of carbon nanotube (CNT) is essential in extending the advanced applications of CNT based systems. However, conducting experiments to estimate mechanical propert...A thorough understanding on the mechanical properties of carbon nanotube (CNT) is essential in extending the advanced applications of CNT based systems. However, conducting experiments to estimate mechanical properties at this scale is extremely challenging. Therefore, development of mechanistic models to estimate the mechanical properties of CNTs along with the integration of existing continuum mechanics concepts is critically important. This paper presents a comprehensive molecular dynamics simulation study on the size dependency and potential function influence of mechanical properties of CNT. Commonly used reactive bond order (REBO) and adaptive intermolecular reactive bond order (A1REBO) potential functions were considered in this regard. Young's modulus and shear modulus of CNTs are derived by integrating classical continuum mechanics concepts with molecular dynamics simulations. The results indicate that the potential function has a significant influence on the estimated mechanical properties of CNTs, and the influence of potential field is much higher when studying the torsional behaviour of CNTs than the tensile behaviour.展开更多
In this paper, a molecular dynamics simulations are provided for atomic structure of nanocrystals(1~3nm)by which t he lattice parameter of X_ray diffraction, cohesive energy and modulus of elas ticity were computed...In this paper, a molecular dynamics simulations are provided for atomic structure of nanocrystals(1~3nm)by which t he lattice parameter of X_ray diffraction, cohesive energy and modulus of elas ticity were computed. The results show that the structure of grain and grain bou ndaries in the same in both nanocrystal and coarse grain materials. The decrease of grain size and the increase volume fraction of grain boundaries lead to a se ries of different features, the modulus of elasticity of nanocrystalline materia ls have been found to be much reduced.展开更多
基金financial support from the National Key R&D Program of China (2018YFF0214500)
文摘The Young’s modulus was measured at high temperatures by impulse excitation of vibration method,and the effects of heating rate,holding time and temperature cycle on the test results were analyzed.The results show that the heating rate has obvious effect on the high temperature Young’s modulus of the green body,but has no obvious effect on that of the sintered products;the holding time of the heating process has no regular effect on the Young’s modulus,and the effect varies with the different products at a certain temperature;the method can also be used to test the Young’s modulus during cooling process.
基金financially supported by the National Key R&D Program of China(No.2021YFB3701203)the National Natural Science Foundation of China(Nos.U22A20113,52201116,52071116,and 52261135543)+1 种基金Heilongjiang Touyan Team ProgramChina Postdoctoral Science Foundation(No.2022M710939).
文摘To enhance the Young’s modulus(E)and strength of titanium alloys,we designed titanium matrix composites with intercon-nected microstructure based on the Hashin-Shtrikman theory.According to the results,the in-situ reaction yielded an interconnected microstructure composed of Ti_(2)C particles when the Ti_(2)C content reached 50vol%.With widths of 10 and 230 nm,the intraparticle Ti lamellae in the prepared composite exhibited a bimodal size distribution due to precipitation and the unreacted Ti phase within the grown Ti_(2)C particles.The composites with interconnected microstructure attained superior properties,including E of 174.3 GPa and ultimate flexural strength of 1014 GPa.Compared with that of pure Ti,the E of the composite was increased by 55% due to the high Ti_(2)C content and interconnected microstructure.The outstanding strength resulted from the strong interfacial bonding,load-bearing capacity of interconnected Ti_(2)C particles,and bimodal intraparticle Ti lamellae,which minimized the average crack driving force.Interrupted flexural tests revealed preferential crack initiation along the{001}cleavage plane and grain boundary of Ti_(2)C in the region with the highest tensile stress.In addition,the propagation can be efficiently inhibited by interparticle Ti grains,which prevented the brittle fracture of the composites.
文摘To get the quantitive value of abnormal biological tissues, an inverse algorithm about the Young's modulus based on the boundary extraction and the image registration technologies is proposed. With the known displacements of boundary tissues and the force distribution, the Young's modulus is calculated by constructing the unit system and the inverse finite element method (IFEM). Then a tough range of the modulus for the whole tissue is estimated referring the value obtained before. The improved particle swarm optimizer (PSO) method is adopted to calculate the whole Yong's modulus distribution. The presented algorithm overcomes some limitations in other Young's modulus reconstruction methods and relaxes the displacements and force boundary condition requirements. The repetitious numerical simulation shows that errors in boundary displacement are not very sensitive to the estimation of next process; a final feasible solution is obtained by the improved PSO method which is close to the theoretical values obtained during searching in an extensive range.
文摘In gas turbines, thermal barrier coatings (TBCs) applied by air plasma spraying are widely used to lower the temperature of hot components. To analyze the characteristics of TBCs such as residual stress, bond strength, fracture toughness, and crack propagation ratio, the Young's modulus and Poisson's ratio are important parameters. For TBC is a brittle and thin film, it is desirable to evaluate those properties while the coatings are bonded to a substrate. An atmospheric plasma spray MCrAIY bond coat and Yttria stabilized zirconia (YSZ) top coat are deposited onto a nickel-base superalloy GH150 substrate. The Young's modulus and Poisson's ratio are measured by cantilever beam bending with NDI. The method will be developed to test the Young' s modulus and Poisson ratio of other multilayer systems.
基金supported by the National Basic Research Program (2007CB935602)the National Natural Science Foundation of China (90607004, 10672005)
文摘A convenient technique is reported in this note for measuring elastic modulus of extremely soft material for cellular adhesion. Specimens of bending cylinder under gravity are used to avoid contact problem between testing device and sample, and a beam model is presented for evaluating the curvatures of gel beams with large elastic deformation. A self-adaptive algorithm is also proposed to search for the best estimation of gels' elastic moduli by comparing the experimental bending curvatures with those computed from the beam model with preestimated moduli. Application to the measurement of the property of polyacrylamide gels indi- cates that the material compliance varies with the concentrations of bis-acrylamide, and the gels become softer after being immersed in a culture medium for a period of time, no matter to what extent they are polymerized.
文摘Like other manufacturing techniques,plasma spraying has also a non-linear behavior because of the contribution of many coating variables.This characteristic results in finding optimal factor combination difficult.Subsequently,the issue can be solved through effective and strategic statistical procedures integrated with systematic experimental data.Plasma spray parameters such as power,stand-off distance and powder feed rate have significant influence on coating characteristics like Young’s modulus.This paper presents the use of statistical techniques in specifically response surface methodology(RSM),analysis of variance,and regression analysis to develop empirical relationship to predict Young’s modulus of plasma-sprayed alumina coatings.The developed empirical relationships can be effectively used to predict Young’s modulus of plasma-sprayed alumina coatings at 95%confidence level.Response graphs and contour plots were constructed to identify the optimum plasma spray parameters to attain maximum Young’s modulus in alumina coatings.A linear regression relationship was established between porosity and Young’s modulus of the alumina coatings.
文摘Young′s Modulus of concrete is studied on the basis of triaxial compressive experiments. The authors proposed two empirical equations to calculate its static Young′s modulus and dynamic Young′s modulus when dynamic Poisson ratio μ d varies nearby 0.20.P wave velocity and elastic modulus have the same varying tendency as letter N. μ,μ d decrease with the increase of loading rate and μ d has a great effect on the parameters E d and E D.
文摘Polymer layers adsorbed to a surface or in a confined environment often change their mechanical properties. There is even the possibility of solidification of the confined layer. To judge the stiffness of such a layer, we used the Hertz model to calculate the Young's modulus of the polymer layer in the confinement of AFM experiments with silicon nitride tip with a radius of curvature ofR ≈ 50 nm and a glass sphere attached to the cantilever R =5 μm. Since there is no visible indentation of the layer in the AFM experiments, the layer is either penetrated very easily, or the indentation is too small to be seen in a force curve. The latter would be the case for a polymer layer with a Young's modulus above 4 × 10^8 Pa in case of an experiment with a silicon nitride tip and 4×10^5 Pa in case of a glass sphere.
基金Project supported by the National Natural Science Foundation of China(Grant No.11072242)the Key Scientific Studies Program of Hebei Province Higher Education Institute,China(Grant No.ZD2018301)Cangzhou National Science Foundation,China(Grant No.177000001)
文摘In 1805, Thomas Young was the first to propose an equation(Young's equation) to predict the value of the equilibrium contact angle of a liquid on a solid. On the basis of our predecessors, we further clarify that the contact angle in Young's equation refers to the super-nano contact angle. Whether the equation is applicable to nanoscale systems remains an open question. Zhu et al. [College Phys. 4 7(1985)] obtained the most simple and convenient approximate formula, known as the Zhu–Qian approximate formula of Young's equation. Here, using molecular dynamics simulation, we test its applicability for nanodrops. Molecular dynamics simulations are performed on argon liquid cylinders placed on a solid surface under a temperature of 90 K, using Lennard–Jones potentials for the interaction between liquid molecules and between a liquid molecule and a solid molecule with the variable coefficient of strength a. Eight values of a between 0.650 and 0.825 are used. By comparison of the super-nano contact angles obtained from molecular dynamics simulation and the Zhu–Qian approximate formula of Young's equation, we find that it is qualitatively applicable for nanoscale systems.
基金supports from National Natural Science Foundation of China (Nos.50775183 and 50805118)Research Fund for Doctoral Programof higher Education (N6CJ0001)National High Technical Research and Development Programme of China (No.2009AA04Z418)
文摘The flat cylindrical indentation tests with different sizes of punch radius were investigated using finite element method (FEM) aimed to reveal the effect of punch size on the indentation behavior of the film/substrate system. Based on the FEM results analysis, two methods was proposed to separate film's reduced Young's modulus from a film/substrate system. The first method was based on a new weight function that quantifies film's and substrate's contributions to the overall mechanical properties of the film/substrate system in the flat cylindrical indentation test. The second method, a numerical approach, including fitting and extrapolation procedures was put forward. Both of the results from the two methods showed a reasonable agreement with the one input FE model. At last, the effect of maximum indentation depth and the surface micro-roughness of the thin film on the reduced Young's modulus of the film/substrate system were discussed. The methods proposed in the present study provide some new conceptions on evaluating other properties of thin films, e.g. creep, for which a flat-ended punch is also employed.
基金Science Research Foundation of Shanghai Municipal Education Commission (No.06VZ004)
文摘The elastic-plastic indentation properties of materials with varying ratio of hardness to Young’s modulus(H/E) were analyzed with the finite element method. And the indentation stress fields of materials with varying ratio H/E on the surface were studied by the experiment. The results show that the penetration depth, contact radius, plastic pile-up and the degree of elastic recovery depend strongly on the ratio H/E. Moreover, graphs were established to describe the relationship between the elastic-plastic indentation parameters and H/E. The established graphs can be used to predict the H/E of materials when compared with experimental data.
文摘Based on the Hertzian granular contact mechanics model, the paper built up a Macroscopic Young’s Elastic Modulus of particle/granular packing rock layers, and built up a ties to connecting Young’s Elastic Modulus of sand particle in Meso and the Macroscopic Young’s Modulus of granular packing rock layers. The Macroscopic Young’s Modulus of granular packing rock layers is far less than the Young’s Modulus of sand particle. The Macroscopic Young’s Modulus of granular packing rock layers is proportioned to the powers of 1/3 of the vertical contact force of sand particles. The Macroscopic Young’s Modulus is inversely proportional to particle diameter. The paper calculated the vertical contact force of five types aligning mode of the particles. When equal stress, the increased of the coordination number lead to the decrease of the contact force fn, this lead to the coordination number is an inverse proportion to Macroscopic Young’s Modulus. But the larger coordination number change only means very little Macroscopic Young’s Modulus change.
基金financially supported by the National Key Research and Development Program of China(No.2019YFA0708700)National Natural Science Foundation of China(52174054,51804326)Shandong Provincial Natural Science Foundation(ZR2019BEE046)
文摘The effect of mechanical strength of the dispersed particle gel(DPG)on its macro plugging performance is significant,however,little study has been reported.In this paper,DPG particles with different mechanical strengths were obtained by mechanical shearing of bulk gels prepared with different formula.Young’s moduli of DPG particles on the micro and nano scales were measured by atomic force microscope for the first time.The mapping relationship among the formula of bulk gel,the Young’s moduli of the DPG particles and the final plugging performance were established.The results showed that when the Young’s moduli of the DPG particles increased from 82 to 328 Pa,the plugging rate increased significantly from 91.46%to 97.10%due to the distinctly enhanced stacking density and strength at this range.While when the Young’s moduli of the DPG particles surpassed 328 Pa,the further increase of plugging rate with the Young’s moduli of the DPG particles became insignificant.These results indicated that the improvement of plugging rate was more efficient by adjusting the Young’s moduli of the DPG particles within certain ranges,providing guidance for improving the macroscopic application properties of DPG systems in reservoir heterogeneity regulation.
基金Project supported by the National Natural Science Foundation of China (Grant No. 50801005)
文摘It is difficult to establish structure-property relationships in a defective solid because of its inhomogeneous-geometry microstructure caused by defects. In the present research, the effects of pores and cracks on the Young’s modulus of a defective solid are studied. Based on the law of the conservation of energy, mathematical formulations are proposed to indicate how the shape, size, and distribution of defects affect the effective Young’s modulus. In this approach, detailed equations are illustrated to represent the shape and size of defects on the effective Young’s modulus. Different from the results obtained from the traditional empirical analyses, mixture law or statistical method, for the first time, our results from the finite element method (FEM) and strict analytical calculation show that the influence of pore radius and crack length on the effective Young’s modulus can be quantified. It is found that the longest crack in a typical microstructure of ceramic coating dominates the contribution of the effective Young’s modulus in the vertical direction of the crack.
文摘Introduction: To investigate a long-term in vivo deterioration of polymethylmethacrylate (PMMA) bone cement over time, we evaluated retrieved PMMA cement in terms of chemical elements presenting in the cement using energy dispersive analysis of X-rays;Knoop hardness;and the Young’s modulus using scanning acoustic microscopy. Materials and Methods: For mechanical evaluation, we could neglect the influences of entrapped air bubbles or blood by the use of small specimens. The study was based on thirteen cement samples (six used in the acetabulum and seven in the femur) derived from eight patients (age at revision surgery: mean 72.5, range 68 to 79). All of these samples were Simplex-P?cement. They were functioning well at least ten years after the previous surgery. Duration until revision surgery was ranged 12 to 25 years (average, 17.4 years). The reason for revision was aseptic mechanical loosening. Twenty samples of Simplex-Preg;cement were served by manually mixing as a control. Results: The average of the hardness of the cement was 17.0 ± 1.2 (range, 13.4-20.6). In the control, the hardness was 17.8 ± 1.5 (range, 14.0-24.6). There was no significant difference between these values. The mean of Young’s modulus of the cement was 5.61 ± 0.19 GPa (range, 5.09-6.10). In the control, the modulus was 6.04 ± 0.13 GPa (range, 5.68-6.45). Although the modulus was significantly less than that of the control, there was only 7% decrease in average between twelve and twenty-five years in vivo. Conclusions: Our results suggest that long-term implantation and functional loading in vivo may not be the limiting factor in the mechanical integrity of the bone cement.
文摘In this paper, we will study the most important effects in the nano-scale resonator: the coupling effect of temperature and strain rate, and the non-Fourier effect in heat conduction. A solution for the generalized thermoelastic vibration of nano-resonator induced by thermal loading has been developed. The Young’s modulus is taken as a linear function of the reference temperature. The effects of the thermal loading and the reference temperature in all the studied fields have been studied and represented in graphs with some comparisons. The Young’s modulus makes significant effects on all the studied fields where the values of the temperature, the vibration of the deflection, stress, displacement, strain, stress-strain energy increase when the Young’s modulus has taken to be variable.
基金supported by the National Natural Science Foundation of China(11622217)the National Key Project of Scientific Instrument and Equipment Development(11327802)+1 种基金the National Program for Special Support of Top-Notch Young Professionalssupported by the Fundamental Research Funds for the Central Universities(lzujbky-2017-ot18,lzujbky-2017-k18)
文摘Twist structures have diverse applications, ranging from dragline, electrical cable, and intelligent structure. Among these applications, tension deformation can't be avoided during the fabrication and working processes, which often leads to the twist structure rotation (called untwisting effect) and twist pitch increasing. As a consequence, this untwisting behavior has a large effect on the effective Young's modulus. In this paper, we present an improved model based on the classical Costello's theory to predict the effective Young's modulus of the basic structure, twisted by three same copper strands under cyclic loading. Series of experiments were carried out to verify the present model taking into account the untwisting effect. The experimental results have better agreements with the presented model than the common Costello's model.
基金provided by the National Key Basic Research Development Program(No.2009CB219603)the Jiangsu Natural Science Fund Project(No.BK20130201)the Jiangsu Graduate Student Innovation Training Project(No.KYLX_1399)
文摘Dynamic elastic parameters of coal are closely linked to crack characteristics and are lithology indicators in seismic exploration. This experimental study measured ultrasonic wave velocity of coal samples considering both parallel(90°) and perpendicular(0°) to bedding planes, and then calculated the dynamic elastic parameters(Edand ld) and their anisotropy values(AEdand Ald). The variations of Edand ld,as well as AEdand Aldwere analyzed under various confining stresses. The results show that: Firstly, a critical confining pressure exists, and significant variation in the parameters can be seen below this point and weak variation appears above it. Secondly, a positive correlation exists between Edand the square of P-wave velocity(VP2), and between AEdand the P-wave velocity anisotropy(AEP) as well; however, there is no clear correlation between ldand P-wave velocity(VP). Thirdly, according to the major controlling factors of anisotropy, the coal samples with different Edand ldas well as AEdand Aldcan be divided into two types: one is mainly controlled by bedding and cracks and the other one is mainly controlled by differences of mineral compositions in directions. Consequently, this study can provide theoretical basis for future research on the dynamic elastic parameters and anisotropy of coal.
基金financially supported by National Science Foundation(NSF)of Sri Lankathe Natural Sciences and Engineering Research Council(NSERC)of Canada
文摘A thorough understanding on the mechanical properties of carbon nanotube (CNT) is essential in extending the advanced applications of CNT based systems. However, conducting experiments to estimate mechanical properties at this scale is extremely challenging. Therefore, development of mechanistic models to estimate the mechanical properties of CNTs along with the integration of existing continuum mechanics concepts is critically important. This paper presents a comprehensive molecular dynamics simulation study on the size dependency and potential function influence of mechanical properties of CNT. Commonly used reactive bond order (REBO) and adaptive intermolecular reactive bond order (A1REBO) potential functions were considered in this regard. Young's modulus and shear modulus of CNTs are derived by integrating classical continuum mechanics concepts with molecular dynamics simulations. The results indicate that the potential function has a significant influence on the estimated mechanical properties of CNTs, and the influence of potential field is much higher when studying the torsional behaviour of CNTs than the tensile behaviour.
文摘In this paper, a molecular dynamics simulations are provided for atomic structure of nanocrystals(1~3nm)by which t he lattice parameter of X_ray diffraction, cohesive energy and modulus of elas ticity were computed. The results show that the structure of grain and grain bou ndaries in the same in both nanocrystal and coarse grain materials. The decrease of grain size and the increase volume fraction of grain boundaries lead to a se ries of different features, the modulus of elasticity of nanocrystalline materia ls have been found to be much reduced.