Considering that there are some limitations in analyzing the anti-sliding seismic stability of dam-foundation systems with the traditional pseudo-static method and response spectrum method, the dynamic strength reduct...Considering that there are some limitations in analyzing the anti-sliding seismic stability of dam-foundation systems with the traditional pseudo-static method and response spectrum method, the dynamic strength reduction method was used to study the deep anti-sliding stability of a high gravity dam with a complex dam foundation in response to strong earthquake-induced ground action. Based on static anti-sliding stability analysis of the dam foundation undertaken by decreasing the shear strength parameters of the rock mass in equal proportion, the seismic time history analysis was carried out. The proposed instability criterion for the dynamic strength reduction method was that the peak values of dynamic displacements and plastic strain energy change suddenly with the increase of the strength reduction factor. The elasto-plastic behavior of the dam foundation was idealized using the Drucker-Prager yield criterion based on the associated flow rule assumption. The result of elasto-plastic time history analysis of an overflow dam monolith based on the dynamic strength reduction method was compared with that of the dynamic linear elastic analysis, and the reliability of elasto-plastic time history analysis was confirmed. The results also show that the safety factors of the dam-foundation system in the static and dynamic cases are 3.25 and 3.0, respectively, and that the F2 fault has a significant influence on the anti-sliding stability of the high gravity dam. It is also concluded that the proposed instability criterion for the dynamic strength reduction method is feasible.展开更多
Methodology for the reliability analysis of hydraulic gravity dam is the key technology in current hydropower construction.Reliability analysis for the dynamical dam safety should be divided into two phases:failure mo...Methodology for the reliability analysis of hydraulic gravity dam is the key technology in current hydropower construction.Reliability analysis for the dynamical dam safety should be divided into two phases:failure mode identification and the calculation of the failure probability.Both of them are studied based on the mathematical statistics and structure reliability theory considering two kinds of uncertainty characters(earthquake variability and material randomness).Firstly,failure mode identification method is established based on the dynamical limit state system and verified through example of Koyna Dam so that the statistical law of progressive failure process in dam body are revealed; Secondly,for the calculation of the failure probability,mathematical model and formula are established according to the characteristics of gravity dam,which include three levels,that is element failure,path failure and system failure.A case study is presented to show the practical application of theoretical method and results of these methods.展开更多
A combined dam structure using different concrete materials offers many practical benefits.There are several real-world cases where largevolume heterogeneous concrete materials have been used together.From the enginee...A combined dam structure using different concrete materials offers many practical benefits.There are several real-world cases where largevolume heterogeneous concrete materials have been used together.From the engineering design standpoint,it is crucial to understand the deformation coordination characteristics and mechanical properties of large-volume heterogeneous concrete,which affect dam safety and stability.In this study,a large dam facility was selected for a case study,and various design schemes of the combined dam structure were developed by changing the configurations of material zoning and material types for a given dam shape.Elastoplastic analysis of the damfoundation-reservoir system for six schemes was carried out under dynamic conditions,in which the concrete damaged plasticity(CDP)model,the Lagrangian finite element formulation,and a surface-to-surface contact model were utilized.To evaluate the mechanical properties of zoning interfaces and coordination characteristics,the vertical distribution of the first principal stress at the longitudinal joint was used as the critical index of deformation coordination control,and the overall deformation and damage characteristics of the dam were also investigated.Through a comparative study of the design schemes,an optimal scheme of the combined dam structure was identified:large-volume roller-compacted concrete(RCC)is recommended for the dam body upstream of the longitudinal joint,and high-volume fly ash conventional concrete(CC)for the dam body downstream of the longitudinal joint.This study provides engineers with a reference basis for combined dam structure design.展开更多
Dynamic architecture of multi-agent systems (MAS) is important for critical systems. As the existing formal specifications of MAS cannot describe its dynamic architecture, a formal approach using n-calculus is prese...Dynamic architecture of multi-agent systems (MAS) is important for critical systems. As the existing formal specifications of MAS cannot describe its dynamic architecture, a formal approach using n-calculus is presented, which is suited for the describing and analyzing of concurrent MAS with dynamic topology, n-calculus describes the belief-desireintention (BDI) model that represents agent's mental states and provides many useful facilities to analyze MAS model such as deadlock, behavior equivalence, and model checking. To illustrate the favorable representation capability of n-calculus, an example of dynamic multi-agent systems in e-commerce is provided. Finally, by using an existing n-calculus supporting tool, MAS model and some key behaviors properties are analyzed and verified.展开更多
Computer programs have been categorized as a useful tool to evaluate the complexity of systems. In fact, agent-based modeling (ABM) is considered a new method to model complex systems characterized by the role of inde...Computer programs have been categorized as a useful tool to evaluate the complexity of systems. In fact, agent-based modeling (ABM) is considered a new method to model complex systems characterized by the role of independent and interrelating agents. Simulations contribute in estimating and comprehending emerging behaviors that require the development of new regulations for local agents that would make improvements to the system. This paper offers an example of a methodology and a process utilized to develop a simulation model named Befergyonet, an ABM used to conduct computer simulations within a spatio-intertemporal environment. The methodology discussed in this paper is intended solely to stimulate the use of innovative computer programs to simulate complex systems as an approach to represent real world events and may be a methodological guide for readers interested in developing their own ABM.展开更多
This paper offers preliminary work on system dynamics and Data mining tools. It tries to understand the dynamics of carrying out large-scale events, such as Hajj. The study looks at a large, recurring problem as a var...This paper offers preliminary work on system dynamics and Data mining tools. It tries to understand the dynamics of carrying out large-scale events, such as Hajj. The study looks at a large, recurring problem as a variable to consider, such as how the flow of people changes over time as well as how location interacts with placement. The predicted data is analyzed using Vensim PLE 32 modeling software, GIS Arc Map 10.2.1, and AnyLogic 7.3.1 software regarding the potential placement of temporal service points, taking into consideration the three dynamic constraints and behavioral aspects: a large population, limitation in time, and space. This research proposes appropriate data analyses to ensure the optimal positioning of the service points with limited time and space for large-scale events. The conceptual framework would be the output of this study. Knowledge may be added to the insights based on the technique.展开更多
基金supported by the National Basic Research Program of China (973 Program,Grant No.2007CB714104)the National Natural Science Foundation of China (Grant No. 50779011)the Innovative Project for Graduate Students of Jiangsu Province (Grant No. CX09B_155Z)
文摘Considering that there are some limitations in analyzing the anti-sliding seismic stability of dam-foundation systems with the traditional pseudo-static method and response spectrum method, the dynamic strength reduction method was used to study the deep anti-sliding stability of a high gravity dam with a complex dam foundation in response to strong earthquake-induced ground action. Based on static anti-sliding stability analysis of the dam foundation undertaken by decreasing the shear strength parameters of the rock mass in equal proportion, the seismic time history analysis was carried out. The proposed instability criterion for the dynamic strength reduction method was that the peak values of dynamic displacements and plastic strain energy change suddenly with the increase of the strength reduction factor. The elasto-plastic behavior of the dam foundation was idealized using the Drucker-Prager yield criterion based on the associated flow rule assumption. The result of elasto-plastic time history analysis of an overflow dam monolith based on the dynamic strength reduction method was compared with that of the dynamic linear elastic analysis, and the reliability of elasto-plastic time history analysis was confirmed. The results also show that the safety factors of the dam-foundation system in the static and dynamic cases are 3.25 and 3.0, respectively, and that the F2 fault has a significant influence on the anti-sliding stability of the high gravity dam. It is also concluded that the proposed instability criterion for the dynamic strength reduction method is feasible.
基金Projects(51021004,51379141)supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China
文摘Methodology for the reliability analysis of hydraulic gravity dam is the key technology in current hydropower construction.Reliability analysis for the dynamical dam safety should be divided into two phases:failure mode identification and the calculation of the failure probability.Both of them are studied based on the mathematical statistics and structure reliability theory considering two kinds of uncertainty characters(earthquake variability and material randomness).Firstly,failure mode identification method is established based on the dynamical limit state system and verified through example of Koyna Dam so that the statistical law of progressive failure process in dam body are revealed; Secondly,for the calculation of the failure probability,mathematical model and formula are established according to the characteristics of gravity dam,which include three levels,that is element failure,path failure and system failure.A case study is presented to show the practical application of theoretical method and results of these methods.
基金supported by the National Natural Science Foundation of China(Grant No.51879185)the Fund of the National Dam Safety Research Center(Grant No.CX2019B02).
文摘A combined dam structure using different concrete materials offers many practical benefits.There are several real-world cases where largevolume heterogeneous concrete materials have been used together.From the engineering design standpoint,it is crucial to understand the deformation coordination characteristics and mechanical properties of large-volume heterogeneous concrete,which affect dam safety and stability.In this study,a large dam facility was selected for a case study,and various design schemes of the combined dam structure were developed by changing the configurations of material zoning and material types for a given dam shape.Elastoplastic analysis of the damfoundation-reservoir system for six schemes was carried out under dynamic conditions,in which the concrete damaged plasticity(CDP)model,the Lagrangian finite element formulation,and a surface-to-surface contact model were utilized.To evaluate the mechanical properties of zoning interfaces and coordination characteristics,the vertical distribution of the first principal stress at the longitudinal joint was used as the critical index of deformation coordination control,and the overall deformation and damage characteristics of the dam were also investigated.Through a comparative study of the design schemes,an optimal scheme of the combined dam structure was identified:large-volume roller-compacted concrete(RCC)is recommended for the dam body upstream of the longitudinal joint,and high-volume fly ash conventional concrete(CC)for the dam body downstream of the longitudinal joint.This study provides engineers with a reference basis for combined dam structure design.
基金Project supported by the National High-Technology Research and Development Program of China(Grant No.8632003AA721070)
文摘Dynamic architecture of multi-agent systems (MAS) is important for critical systems. As the existing formal specifications of MAS cannot describe its dynamic architecture, a formal approach using n-calculus is presented, which is suited for the describing and analyzing of concurrent MAS with dynamic topology, n-calculus describes the belief-desireintention (BDI) model that represents agent's mental states and provides many useful facilities to analyze MAS model such as deadlock, behavior equivalence, and model checking. To illustrate the favorable representation capability of n-calculus, an example of dynamic multi-agent systems in e-commerce is provided. Finally, by using an existing n-calculus supporting tool, MAS model and some key behaviors properties are analyzed and verified.
文摘Computer programs have been categorized as a useful tool to evaluate the complexity of systems. In fact, agent-based modeling (ABM) is considered a new method to model complex systems characterized by the role of independent and interrelating agents. Simulations contribute in estimating and comprehending emerging behaviors that require the development of new regulations for local agents that would make improvements to the system. This paper offers an example of a methodology and a process utilized to develop a simulation model named Befergyonet, an ABM used to conduct computer simulations within a spatio-intertemporal environment. The methodology discussed in this paper is intended solely to stimulate the use of innovative computer programs to simulate complex systems as an approach to represent real world events and may be a methodological guide for readers interested in developing their own ABM.
文摘This paper offers preliminary work on system dynamics and Data mining tools. It tries to understand the dynamics of carrying out large-scale events, such as Hajj. The study looks at a large, recurring problem as a variable to consider, such as how the flow of people changes over time as well as how location interacts with placement. The predicted data is analyzed using Vensim PLE 32 modeling software, GIS Arc Map 10.2.1, and AnyLogic 7.3.1 software regarding the potential placement of temporal service points, taking into consideration the three dynamic constraints and behavioral aspects: a large population, limitation in time, and space. This research proposes appropriate data analyses to ensure the optimal positioning of the service points with limited time and space for large-scale events. The conceptual framework would be the output of this study. Knowledge may be added to the insights based on the technique.