The heat transfer and stability of methane hydrate in reservoirs have a direct impact on the drilling and production efficiency of hydrate resources,especially in complex stress environments caused by formation subsid...The heat transfer and stability of methane hydrate in reservoirs have a direct impact on the drilling and production efficiency of hydrate resources,especially in complex stress environments caused by formation subsidence.In this study,we investigated the thermal transport and structural stability of methane hydrate under triaxial compression using molecular dynamics simulations.The results suggest that the thermal conductivity of methane hydrate increases with increasing compression strain.Two phonon transport mechanisms were identified as factors enhancing thermal conductivity.At low compressive strains,a low-frequency phonon transport channel was established due to the overlap of phonon vibration peaks between methane and water molecules.At high compressive strains,the filling of larger phonon bandgaps facilitated the opening of more phonon transport channels.Additionally,we found that a strain of0.04 is a watershed point,where methane hydrate transitions from stable to unstable.Furthermore,a strain of0.06 marks the threshold at which the diffusion capacities of methane and water molecules are at their peaks.At a higher strain of0.08,the increased volume compression reduces the available space,limiting the diffusion ability of water and methane molecules within the hydrate.The synergistic effect of the strong diffusion ability and high probability of collision between atoms increases the thermal conductivity of hydrates during the unstable period compared to the stable period.Our findings offer valuable theoretical insights into the thermal conductivity and stability of methane hydrates in reservoir stress environments.展开更多
Chitosanases EAG1, a classical glycoside hydrolase from Bacillus ehimensis, is relatively unstable with higher temperature. This shortcoming seriously restricts its industrial application. Therefore, it is crucial to ...Chitosanases EAG1, a classical glycoside hydrolase from Bacillus ehimensis, is relatively unstable with higher temperature. This shortcoming seriously restricts its industrial application. Therefore, it is crucial to clarify the theoretical basis of thermo stability and to produce enzymes with high activity and stability. Using the structural modeling and molecular dynamical simulation, residues Leu84, Gly113, Asp116, Ala207 and Leu286 were believed to be the key residues for structural stability. Then the predicted residue Leu84 was mutated to ALA. It was shown that the L84A mutation can improve the thermal stability of chitosanases EAG1. Together with previous studies, mutations of G113C, D116C, A207C and L286C forms two sulfur bonds can change the thermal stability of EAG1. The results suggest that the thermal stability of EAG1 could be engineered by site-directed mutagenesis on the conserved residues. This protocol could be employed for improving thermal stability of other chitosanases EAG1.展开更多
The amount of rainfall varies unevenly in different regions of the Qinghai-Tibet Plateau, with some regions becoming wetter and others drier. Precipitation has an important impact on the process of surface energy bala...The amount of rainfall varies unevenly in different regions of the Qinghai-Tibet Plateau, with some regions becoming wetter and others drier. Precipitation has an important impact on the process of surface energy balance and the energy-water transfer within soils. To clarify the thermal-moisture dynamics and thermal stability of the active layer in permafrost regions under wet/dry conditions, the verified water-vapour-heat coupling model was used. Changes in the surface energy balance, energy-water transfer within the soil, and thickness of the active layer were quantitatively analyzed. The results demonstrate that rainfall changes significantly affect the Bowen ratio, which in turn affects surface energy exchange. Under wet/dry conditions, there is a positive correlation between rainfall and liquid water flux under the hydraulic gradient;water vapour migration is the main form under the temperature gradient, which indicates that the influence of water vapour migration on thermalmoisture dynamics of the active layer cannot be neglected. Concurrently, regardless of wet or dry conditions,disturbance of the heat transport by conduction caused by rainfall is stronger than that of convection by liquid water. In addition, when rainfall decreases by 1.5 times(212 mm) and increases by 1.5 times(477 mm), the thickness of the active layer increases by 0.12 m and decreases by 0.21 m, respectively. The results show that dry conditions are not conducive to the preservation of frozen soil;however, wet conditions are conducive to the preservation of frozen soil, although there is a threshold value. When this threshold value is exceeded, rainfall is unfavourable for the development of frozen soil.展开更多
Anisotropic shapes of gold nanoparticles are prepared using a modified seed method in the presence of silver ions or clusters in order to study the thermal stability and the dynamics of the hot carriers induced by fem...Anisotropic shapes of gold nanoparticles are prepared using a modified seed method in the presence of silver ions or clusters in order to study the thermal stability and the dynamics of the hot carriers induced by femtosecond laser pulses. Although gold nanospheres are stable towards thermal treatment, the decomposition of the gold nanorods into spherical nanoparticle aggregates upon thermal treatment is mechanistically different from the case of nanoprisms. Great enhancement of thermal stability is achieved by modifying the surface of the nanoparticles by adding specific amounts of polyvinyl pyrrolidone (PVP) after preparation of gold particles of different shapes capped with cetyltrimethylammonium bromide (CTAB). The surface plasmon resonance spectra of the gold nanostructures are used to monitor their morphological changes. In regards to the hot carrier dynamics, it is found that the phonon-phonon (ph-ph) coupling is much slower in dots than in rods and prisms while electron-phonon (e-ph) coupling is almost the same in these particles.展开更多
Single-walled carbon nanotubes(SWCNTs)are receiving immense research attention due to their tremendous thermal,electrical,structural and mechanical properties.In this paper,an exact solution of the dynamic response of...Single-walled carbon nanotubes(SWCNTs)are receiving immense research attention due to their tremendous thermal,electrical,structural and mechanical properties.In this paper,an exact solution of the dynamic response of SWCNT with a moving uniformly distributed load is presented.The SWCNT is modelled via the theories of Bernoulli-Euler-thermal elasticity mechanics and solved using Integral transforms.The developed closed-form solution in the present work is compared with existing results and excellent agreements are established.The parametric studies show that as the magnitude of the pressure distribution at the surface increases,the deflection associated with the single walled nanotube increases at any mode whilst a corresponding increase in temperature and foundation parameter have an attenuating effect on deflection.Moreover,an increase in the Winkler parameter,as well as a decrease in the SWCNT mass increases its frequency of vibration.Furthermore,an increase in the speed of the external agent decreases the total external pressure as a result of the removal of dead loads.The present work is envisaged to improve the application of SWCNT as nanodevices for structural,electrical and mechanical systems.展开更多
Dynamic equations controlling the thermally-driven fluid convection in a single rock crack are established in the paper . The critical criteria for the onset of convection in such a configuration are found by linear d...Dynamic equations controlling the thermally-driven fluid convection in a single rock crack are established in the paper . The critical criteria for the onset of convection in such a configuration are found by linear dynamic analysis of the equations and the stability of the convection discussed by nonlinear analysis method . The research demonstrates that the critical Rayleigh number has a magnitude 103. While the Rayleigh number R of real ore-forming fluids exceeds this value , the convection happens , and as R becomes larger , the fluid convection pattern develops from nonequilibrium steady states to double-periodically produced limit cycles and eventually to chaos (turbulences ).The implication of these dynamic analyses for the ore-forming processes of late-magma tic hydrothermal deposits is also discussed in the paper .展开更多
Organic photovoltaics(OPVs)need to overcome limitations such as insufficient thermal stability to be commercialized.The reported approaches to improve stability either rely on the development of new materials or on ta...Organic photovoltaics(OPVs)need to overcome limitations such as insufficient thermal stability to be commercialized.The reported approaches to improve stability either rely on the development of new materials or on tailoring the donor/acceptor morphology,however,exhibiting limited applicability.Therefore,it is timely to develop an easy method to enhance thermal stability without having to develop new donor/acceptor materials or donor–acceptor compatibilizers,or by introducing another third component.Herein,a unique approach is presented,based on constructing a polymer fiber rigid network with a high glass transition temperature(T_(g))to impede the movement of acceptor and donor molecules,to immobilize the active layer morphology,and thereby to improve thermal stability.A high-T_(g) one-dimensional aramid nanofiber(ANF)is utilized for network construction.Inverted OPVs with ANF network yield superior thermal stability compared to the ANF-free counterpart.The ANF network-incorporated active layer demonstrates significantly more stable morphology than the ANF-free counterpart,thereby leaving fundamental processes such as charge separation,transport,and collection,determining the device efficiency,largely unaltered.This strategy is also successfully applied to other photovoltaic systems.The strategy of incorporating a polymer fiber rigid network with high T_(g) offers a distinct perspective addressing the challenge of thermal instability with simplicity and universality.展开更多
A thermoelectric generation Stirling engine (TEG-Stirling engine) is discussed by employing a low temperature Stirling engine and the dissipative equation of motion derived from the method of thermomechanical dynamics...A thermoelectric generation Stirling engine (TEG-Stirling engine) is discussed by employing a low temperature Stirling engine and the dissipative equation of motion derived from the method of thermomechanical dynamics (TMD). The results and mechanism of axial flux electromagnetic induction (AF-EMI) are applied to a low temperature Stirling engine, resulting in a TEG-Stirling engine. The method of TMD produced thermodynamically consistent and time-dependent physical quantities for the first time, such as internal energy ℰ(t), thermodynamic work Wth(t), the total entropy (heat dissipation) Qd(t)and measure or temperature of a nonequilibrium state T˜(t). The TMD analysis produced a lightweight mechanical system of TEG-Stirling engine which derives electric power from waste heat of temperature (40˚CT100˚C) by a thermoelectric conversion method. An optimal low rotational speed about 30θ′(t)/(2π)60(rpm) is found, applicable to devices for sustainable, clean energy technologies. The stability of a thermal state and angular rotations of TEG-Stirling engine are specifically shown by employing properties of nonequilibrium temperature T˜(t), which is also applied to study optimal fuel-injection and combustion timings of heat engines.展开更多
In this paper,a novel double-wall carbon nanotube(DWCNT) with both edge and screw dislocations is studied by using the molecular dynamics(MD) method.The differences between two adjacent tubule indexes of armchair ...In this paper,a novel double-wall carbon nanotube(DWCNT) with both edge and screw dislocations is studied by using the molecular dynamics(MD) method.The differences between two adjacent tubule indexes of armchair and zigzag nanotubes are determined to be 5 and 9,respectively,by taking into account the symmetry,integrality,and thermal stability of the composite structures.It is found that melting first occurs near the dislocations,and the melting temperatures of the dislocated armchair and zigzag DWCNTs are around 2600 K-2700 K.At the premelting temperatures,the shrink of the dislocation loop,which is comprised of edge and screw dislocations,implies that the composite dislocation in DWCNTs has self-healing ability.The dislocated DWCNTs first fracture at the edge dislocations,which induces the entire break in axial tensile test.The dislocated DWCNTs have a smaller fracture strength compared to the perfect DWCNTs.Our results not only match with the dislocation glide of carbon nanotubes(CNTs) in experiments,but also can free from the electron beam radiation under experimental conditions observed by the high resolution transmission electron microscope(HRTEM),which is deemed to cause the motion of dislocation loop.展开更多
Using the Stillinger Weber (SW) potential model,we investigate the thermal stability of pristine silicon nanowires based on classical molecular dynamics (MD) simulations.We explore the structural evolutions and th...Using the Stillinger Weber (SW) potential model,we investigate the thermal stability of pristine silicon nanowires based on classical molecular dynamics (MD) simulations.We explore the structural evolutions and the Lindemann indices of silicon nanowires at different temperatures in order to unveil atomic-level melting behaviour of silicon nanowires.The simulation results show that silicon nanowires with surface reconstructions have higher thermal stability than those without surface reconstructions,and that silicon nanowires with perpendicular dimmer rows on the two (100) surfaces have somewhat higher thermal stability than nanowires with parallel dimmer rows on the two (100) surfaces.Futher-more,the melting temperature of silicon nanowires increases as their diameter increases and reaches a saturation value close to the melting temperature of bulk silicon. The value of the Lindemann index for melting silicon nanowires is 0.037.展开更多
A new process of welding aluminum water-cooled busbars is proposed, It can not only reduce the weight and cost, but also improve the dynamic and thermal stability. Furthermore~ both finite element method analysis and ...A new process of welding aluminum water-cooled busbars is proposed, It can not only reduce the weight and cost, but also improve the dynamic and thermal stability. Furthermore~ both finite element method analysis and a prototype test testify the advantages of the design which is not limited by load current and provides a new approach for water-cooled reactors.展开更多
The microstructure and thermal stability of nanocrystalline vanadium with an average grain size ranging from 2.86 to 7.50 nm are calculated by means of the analytic embedded-atom method and molecular dynamics. The gra...The microstructure and thermal stability of nanocrystalline vanadium with an average grain size ranging from 2.86 to 7.50 nm are calculated by means of the analytic embedded-atom method and molecular dynamics. The grain boundary and nanocrystal- line grain atoms are differentiated by the common neighbor analysis method. The results indicate that the fraction of grain boundary increases with the grain size decreasing, and the mean energy of atoms is higher than that of coarse crystals. The thermal-stable tem- peratures of nanocrystalline vanadium are determined from the evolution of atomic energy, fraction of grain boundary and radial distribution function. It is shown that the stable tem- perature decreases obviously with the grain size decreasing. In addition the reasons which cause the grain growth of nanocrystalline vanadium are discussed.展开更多
In the present paper, the dynamic stability of multi-walled carbon nanotubes (MW- CNTs) embedded in an elastic medium is investigated including thermal environment effects. To this end, a nonlocal Timoshenko beam mo...In the present paper, the dynamic stability of multi-walled carbon nanotubes (MW- CNTs) embedded in an elastic medium is investigated including thermal environment effects. To this end, a nonlocal Timoshenko beam model is developed which captures small scale effects. Dynamic governing equations of the carbon nanotubes are formulated based on the Timoshenko beam theory including the effects of axial compressive force. Then a parametric study is conducted to investigate the influences of static load factor, temperature change, nonlocal parameter, slenderness ratio and spring constant of the elastic medium on the dynamic stability characteristics of MWCNTs with simply-supported end supports.展开更多
The effects of Y and Nb addition on thermal stability,glass-forming ability(GFA),and magnetic softness of Co75B25 metallic glass(MG)were comprehensively investigated.The experimental results indicated that the thermal...The effects of Y and Nb addition on thermal stability,glass-forming ability(GFA),and magnetic softness of Co75B25 metallic glass(MG)were comprehensively investigated.The experimental results indicated that the thermal stability,GFA,and magnetic softness of the studied MGs increase in the order Co_(75)B_(25)<Co_(73)Nb_(2)B_(25)<Co_(71.5)Y_(3.5)B_(25)<Co_(69.5)Y_(3.5)Nb_(2)B_(25).The structural origins of the improved properties were revealed by ab initio molecular dynamics(AIMD)simulations and density functional theory(DFT)calculations.Results showed that the B-centered prism units are the primary structure-forming units of the four MGs,connect through vertex-,edge-,and face-shared(VS,ES,and FS)atoms,and Co-centered units tend to connect with Co/B-centered units via the intercross-shared(IS)atoms.The addition of Y and Nb not only plays the role of connecting atoms but also enhances both bond strengths and the fractions of icosahedral-like units in increasing order Co_(75)B_(25)<Co_(73)Nb_(2)B_(25)<Co_(71.5)Y_(3.5)B_(25)<Co_(69.5)Y_(3.5)Nb_(2)B_(25),which is conducive to the enhancement of the structural stability,atomic packing density,and viscosity,thereby improving thermal stability and GFA.In addition,the improvement of structural stability and homogeneity leads to enhanced magnetic softness.展开更多
The fast dynamic properties of the surface of metallic glasses(MGs) play a critical role in determining their potential applications. However, due to the significant difference in thermal history between atomic simula...The fast dynamic properties of the surface of metallic glasses(MGs) play a critical role in determining their potential applications. However, due to the significant difference in thermal history between atomic simulation models and laboratory-made samples, the atomic-scale behaviors of the fast surface dynamics of MGs in experiments remain uncertain. Herein, we prepared model MG films with notable variations in thermal stability using a recently developed efficient annealing protocol, and investigated their atomic-scale dynamics systematically. We found that the dynamics of surface atoms remain invariant, whereas the difference in dynamical heterogeneity between surface and interior regions increases with the improvement of thermal stability. This can be associated with the more pronounced correlation between atomic activation energy spectra and depth from the surface in samples with higher thermal stability. In addition, dynamic anisotropy appears for surface atoms, and their transverse dynamics are faster than normal components, which can also be interpreted by activation energy spectra. Our results reveal the presence of strong liquid-like atomic dynamics confined to the surface of laboratory-made MGs, illuminating the underlying mechanisms for surface engineering design, such as cold joining by ultrasonic vibrations and superlattice growth.展开更多
Effect of retanning on the thermal stability of leather is eliciting increasing attention. However, the relationship between the hydrophilicity of retanning agents and the heat resistance of leather and the correspond...Effect of retanning on the thermal stability of leather is eliciting increasing attention. However, the relationship between the hydrophilicity of retanning agents and the heat resistance of leather and the corresponding mechanism remain unclear. Herein, phenolic formaldehyde syntans (PFSs) were selected as models to explore the effect of the hydrophilicity of retanning agents on the thermal stability of retanned leather. The thermal stability of leather was closely correlated to the hydrophilic group content (sulfonation degree) of PFSs. As the sulfonation degree increased, the water absorption rate of PFSs and their retanned leathers decreased, whereas the thermal stability of leather increased. Molecular dynamics simulation results proved that the introduction of PFSs could reduce the binding ability of collagen molecules with water and thus decreased the water molecules around the PFS-treated collagen. These results may provide guidance for the tanners to select retanning agents reasonably to improve the thermal stability of leather.展开更多
基金the National Natural Science Foun-dation of China(Grant Nos.52376083 and 51991362).
文摘The heat transfer and stability of methane hydrate in reservoirs have a direct impact on the drilling and production efficiency of hydrate resources,especially in complex stress environments caused by formation subsidence.In this study,we investigated the thermal transport and structural stability of methane hydrate under triaxial compression using molecular dynamics simulations.The results suggest that the thermal conductivity of methane hydrate increases with increasing compression strain.Two phonon transport mechanisms were identified as factors enhancing thermal conductivity.At low compressive strains,a low-frequency phonon transport channel was established due to the overlap of phonon vibration peaks between methane and water molecules.At high compressive strains,the filling of larger phonon bandgaps facilitated the opening of more phonon transport channels.Additionally,we found that a strain of0.04 is a watershed point,where methane hydrate transitions from stable to unstable.Furthermore,a strain of0.06 marks the threshold at which the diffusion capacities of methane and water molecules are at their peaks.At a higher strain of0.08,the increased volume compression reduces the available space,limiting the diffusion ability of water and methane molecules within the hydrate.The synergistic effect of the strong diffusion ability and high probability of collision between atoms increases the thermal conductivity of hydrates during the unstable period compared to the stable period.Our findings offer valuable theoretical insights into the thermal conductivity and stability of methane hydrates in reservoir stress environments.
文摘Chitosanases EAG1, a classical glycoside hydrolase from Bacillus ehimensis, is relatively unstable with higher temperature. This shortcoming seriously restricts its industrial application. Therefore, it is crucial to clarify the theoretical basis of thermo stability and to produce enzymes with high activity and stability. Using the structural modeling and molecular dynamical simulation, residues Leu84, Gly113, Asp116, Ala207 and Leu286 were believed to be the key residues for structural stability. Then the predicted residue Leu84 was mutated to ALA. It was shown that the L84A mutation can improve the thermal stability of chitosanases EAG1. Together with previous studies, mutations of G113C, D116C, A207C and L286C forms two sulfur bonds can change the thermal stability of EAG1. The results suggest that the thermal stability of EAG1 could be engineered by site-directed mutagenesis on the conserved residues. This protocol could be employed for improving thermal stability of other chitosanases EAG1.
基金funded by the National Natural Science Foundation of China (No.42261028,No.41961010,No.41801033)the "Light of West China" Program for the Organization Department of the Central Committee of the CPC, etc. (Zhang Mingli)+2 种基金the Chinese Academy of Sciences "Light of West China" Program for Western Young ScholarsIndustrial support program of higher education of Gansu province (2020C-40)Basic Research Innovation Group of Gansu province (20JR5RA478)
文摘The amount of rainfall varies unevenly in different regions of the Qinghai-Tibet Plateau, with some regions becoming wetter and others drier. Precipitation has an important impact on the process of surface energy balance and the energy-water transfer within soils. To clarify the thermal-moisture dynamics and thermal stability of the active layer in permafrost regions under wet/dry conditions, the verified water-vapour-heat coupling model was used. Changes in the surface energy balance, energy-water transfer within the soil, and thickness of the active layer were quantitatively analyzed. The results demonstrate that rainfall changes significantly affect the Bowen ratio, which in turn affects surface energy exchange. Under wet/dry conditions, there is a positive correlation between rainfall and liquid water flux under the hydraulic gradient;water vapour migration is the main form under the temperature gradient, which indicates that the influence of water vapour migration on thermalmoisture dynamics of the active layer cannot be neglected. Concurrently, regardless of wet or dry conditions,disturbance of the heat transport by conduction caused by rainfall is stronger than that of convection by liquid water. In addition, when rainfall decreases by 1.5 times(212 mm) and increases by 1.5 times(477 mm), the thickness of the active layer increases by 0.12 m and decreases by 0.21 m, respectively. The results show that dry conditions are not conducive to the preservation of frozen soil;however, wet conditions are conducive to the preservation of frozen soil, although there is a threshold value. When this threshold value is exceeded, rainfall is unfavourable for the development of frozen soil.
文摘Anisotropic shapes of gold nanoparticles are prepared using a modified seed method in the presence of silver ions or clusters in order to study the thermal stability and the dynamics of the hot carriers induced by femtosecond laser pulses. Although gold nanospheres are stable towards thermal treatment, the decomposition of the gold nanorods into spherical nanoparticle aggregates upon thermal treatment is mechanistically different from the case of nanoprisms. Great enhancement of thermal stability is achieved by modifying the surface of the nanoparticles by adding specific amounts of polyvinyl pyrrolidone (PVP) after preparation of gold particles of different shapes capped with cetyltrimethylammonium bromide (CTAB). The surface plasmon resonance spectra of the gold nanostructures are used to monitor their morphological changes. In regards to the hot carrier dynamics, it is found that the phonon-phonon (ph-ph) coupling is much slower in dots than in rods and prisms while electron-phonon (e-ph) coupling is almost the same in these particles.
文摘Single-walled carbon nanotubes(SWCNTs)are receiving immense research attention due to their tremendous thermal,electrical,structural and mechanical properties.In this paper,an exact solution of the dynamic response of SWCNT with a moving uniformly distributed load is presented.The SWCNT is modelled via the theories of Bernoulli-Euler-thermal elasticity mechanics and solved using Integral transforms.The developed closed-form solution in the present work is compared with existing results and excellent agreements are established.The parametric studies show that as the magnitude of the pressure distribution at the surface increases,the deflection associated with the single walled nanotube increases at any mode whilst a corresponding increase in temperature and foundation parameter have an attenuating effect on deflection.Moreover,an increase in the Winkler parameter,as well as a decrease in the SWCNT mass increases its frequency of vibration.Furthermore,an increase in the speed of the external agent decreases the total external pressure as a result of the removal of dead loads.The present work is envisaged to improve the application of SWCNT as nanodevices for structural,electrical and mechanical systems.
文摘Dynamic equations controlling the thermally-driven fluid convection in a single rock crack are established in the paper . The critical criteria for the onset of convection in such a configuration are found by linear dynamic analysis of the equations and the stability of the convection discussed by nonlinear analysis method . The research demonstrates that the critical Rayleigh number has a magnitude 103. While the Rayleigh number R of real ore-forming fluids exceeds this value , the convection happens , and as R becomes larger , the fluid convection pattern develops from nonequilibrium steady states to double-periodically produced limit cycles and eventually to chaos (turbulences ).The implication of these dynamic analyses for the ore-forming processes of late-magma tic hydrothermal deposits is also discussed in the paper .
基金financially supported by the Sichuan Science and Technology Program(Grant Nos.2023YFH0087,2023YFH0085,2023YFH0086,and 2023NSFSC0990)State Key Laboratory of Polymer Materials Engineering(Grant Nos.sklpme2022-3-02 and sklpme2023-2-11)+1 种基金Tibet Foreign Experts Program(Grant No.2022wz002)supported by the King Abdullah University of Science and Technology(KAUST)Office of Research Administration(ORA)under Award Nos.OSR-CARF/CCF-3079 and OSR-2021-CRG10-4701.
文摘Organic photovoltaics(OPVs)need to overcome limitations such as insufficient thermal stability to be commercialized.The reported approaches to improve stability either rely on the development of new materials or on tailoring the donor/acceptor morphology,however,exhibiting limited applicability.Therefore,it is timely to develop an easy method to enhance thermal stability without having to develop new donor/acceptor materials or donor–acceptor compatibilizers,or by introducing another third component.Herein,a unique approach is presented,based on constructing a polymer fiber rigid network with a high glass transition temperature(T_(g))to impede the movement of acceptor and donor molecules,to immobilize the active layer morphology,and thereby to improve thermal stability.A high-T_(g) one-dimensional aramid nanofiber(ANF)is utilized for network construction.Inverted OPVs with ANF network yield superior thermal stability compared to the ANF-free counterpart.The ANF network-incorporated active layer demonstrates significantly more stable morphology than the ANF-free counterpart,thereby leaving fundamental processes such as charge separation,transport,and collection,determining the device efficiency,largely unaltered.This strategy is also successfully applied to other photovoltaic systems.The strategy of incorporating a polymer fiber rigid network with high T_(g) offers a distinct perspective addressing the challenge of thermal instability with simplicity and universality.
文摘A thermoelectric generation Stirling engine (TEG-Stirling engine) is discussed by employing a low temperature Stirling engine and the dissipative equation of motion derived from the method of thermomechanical dynamics (TMD). The results and mechanism of axial flux electromagnetic induction (AF-EMI) are applied to a low temperature Stirling engine, resulting in a TEG-Stirling engine. The method of TMD produced thermodynamically consistent and time-dependent physical quantities for the first time, such as internal energy ℰ(t), thermodynamic work Wth(t), the total entropy (heat dissipation) Qd(t)and measure or temperature of a nonequilibrium state T˜(t). The TMD analysis produced a lightweight mechanical system of TEG-Stirling engine which derives electric power from waste heat of temperature (40˚CT100˚C) by a thermoelectric conversion method. An optimal low rotational speed about 30θ′(t)/(2π)60(rpm) is found, applicable to devices for sustainable, clean energy technologies. The stability of a thermal state and angular rotations of TEG-Stirling engine are specifically shown by employing properties of nonequilibrium temperature T˜(t), which is also applied to study optimal fuel-injection and combustion timings of heat engines.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10974166 and 10774127)the Cultivation Fund of the Key Scientific and Technical Innovation Project of the Ministry of Education of China (Grant No. 708068)the Research Foundation of Education Bureau of Hunan Province,China (Grant Nos. 09A094 and 10A118)
文摘In this paper,a novel double-wall carbon nanotube(DWCNT) with both edge and screw dislocations is studied by using the molecular dynamics(MD) method.The differences between two adjacent tubule indexes of armchair and zigzag nanotubes are determined to be 5 and 9,respectively,by taking into account the symmetry,integrality,and thermal stability of the composite structures.It is found that melting first occurs near the dislocations,and the melting temperatures of the dislocated armchair and zigzag DWCNTs are around 2600 K-2700 K.At the premelting temperatures,the shrink of the dislocation loop,which is comprised of edge and screw dislocations,implies that the composite dislocation in DWCNTs has self-healing ability.The dislocated DWCNTs first fracture at the edge dislocations,which induces the entire break in axial tensile test.The dislocated DWCNTs have a smaller fracture strength compared to the perfect DWCNTs.Our results not only match with the dislocation glide of carbon nanotubes(CNTs) in experiments,but also can free from the electron beam radiation under experimental conditions observed by the high resolution transmission electron microscope(HRTEM),which is deemed to cause the motion of dislocation loop.
基金Project supported by the National Natural Science Foundation of China (Grant No 10774127)
文摘Using the Stillinger Weber (SW) potential model,we investigate the thermal stability of pristine silicon nanowires based on classical molecular dynamics (MD) simulations.We explore the structural evolutions and the Lindemann indices of silicon nanowires at different temperatures in order to unveil atomic-level melting behaviour of silicon nanowires.The simulation results show that silicon nanowires with surface reconstructions have higher thermal stability than those without surface reconstructions,and that silicon nanowires with perpendicular dimmer rows on the two (100) surfaces have somewhat higher thermal stability than nanowires with parallel dimmer rows on the two (100) surfaces.Futher-more,the melting temperature of silicon nanowires increases as their diameter increases and reaches a saturation value close to the melting temperature of bulk silicon. The value of the Lindemann index for melting silicon nanowires is 0.037.
文摘A new process of welding aluminum water-cooled busbars is proposed, It can not only reduce the weight and cost, but also improve the dynamic and thermal stability. Furthermore~ both finite element method analysis and a prototype test testify the advantages of the design which is not limited by load current and provides a new approach for water-cooled reactors.
基金supported by the National Natural Science Foundation of China(Grant No.50371026).
文摘The microstructure and thermal stability of nanocrystalline vanadium with an average grain size ranging from 2.86 to 7.50 nm are calculated by means of the analytic embedded-atom method and molecular dynamics. The grain boundary and nanocrystal- line grain atoms are differentiated by the common neighbor analysis method. The results indicate that the fraction of grain boundary increases with the grain size decreasing, and the mean energy of atoms is higher than that of coarse crystals. The thermal-stable tem- peratures of nanocrystalline vanadium are determined from the evolution of atomic energy, fraction of grain boundary and radial distribution function. It is shown that the stable tem- perature decreases obviously with the grain size decreasing. In addition the reasons which cause the grain growth of nanocrystalline vanadium are discussed.
文摘In the present paper, the dynamic stability of multi-walled carbon nanotubes (MW- CNTs) embedded in an elastic medium is investigated including thermal environment effects. To this end, a nonlocal Timoshenko beam model is developed which captures small scale effects. Dynamic governing equations of the carbon nanotubes are formulated based on the Timoshenko beam theory including the effects of axial compressive force. Then a parametric study is conducted to investigate the influences of static load factor, temperature change, nonlocal parameter, slenderness ratio and spring constant of the elastic medium on the dynamic stability characteristics of MWCNTs with simply-supported end supports.
基金This work was financially supported by the National Natural Science Foundation of China(Grant No.51871039)the Key Laboratory of Solidification Control and Digital Preparation Technology(Liaoning Province),the Supercomputing Center of Dalian University of Technology,and the Global Institute for Materials Research Tohoku Program,Tohoku University,Japan。
文摘The effects of Y and Nb addition on thermal stability,glass-forming ability(GFA),and magnetic softness of Co75B25 metallic glass(MG)were comprehensively investigated.The experimental results indicated that the thermal stability,GFA,and magnetic softness of the studied MGs increase in the order Co_(75)B_(25)<Co_(73)Nb_(2)B_(25)<Co_(71.5)Y_(3.5)B_(25)<Co_(69.5)Y_(3.5)Nb_(2)B_(25).The structural origins of the improved properties were revealed by ab initio molecular dynamics(AIMD)simulations and density functional theory(DFT)calculations.Results showed that the B-centered prism units are the primary structure-forming units of the four MGs,connect through vertex-,edge-,and face-shared(VS,ES,and FS)atoms,and Co-centered units tend to connect with Co/B-centered units via the intercross-shared(IS)atoms.The addition of Y and Nb not only plays the role of connecting atoms but also enhances both bond strengths and the fractions of icosahedral-like units in increasing order Co_(75)B_(25)<Co_(73)Nb_(2)B_(25)<Co_(71.5)Y_(3.5)B_(25)<Co_(69.5)Y_(3.5)Nb_(2)B_(25),which is conducive to the enhancement of the structural stability,atomic packing density,and viscosity,thereby improving thermal stability and GFA.In addition,the improvement of structural stability and homogeneity leads to enhanced magnetic softness.
基金sponsored by the National Natural Science Foundation of China (Grant No. 52101201)supported by the National Natural Science Foundation of China (Grant No.T2325004)+2 种基金sponsored by the National Natural Science Foundation of China(Grant No. 51801046)the Natural Science Foundation of Chongqing,China (Grant No. cstc2021jcyj-msxm X0369)the Science Fund for Scientific and Technological Innovation Team of Shaanxi Province (Grant No. 2021TD-14)。
文摘The fast dynamic properties of the surface of metallic glasses(MGs) play a critical role in determining their potential applications. However, due to the significant difference in thermal history between atomic simulation models and laboratory-made samples, the atomic-scale behaviors of the fast surface dynamics of MGs in experiments remain uncertain. Herein, we prepared model MG films with notable variations in thermal stability using a recently developed efficient annealing protocol, and investigated their atomic-scale dynamics systematically. We found that the dynamics of surface atoms remain invariant, whereas the difference in dynamical heterogeneity between surface and interior regions increases with the improvement of thermal stability. This can be associated with the more pronounced correlation between atomic activation energy spectra and depth from the surface in samples with higher thermal stability. In addition, dynamic anisotropy appears for surface atoms, and their transverse dynamics are faster than normal components, which can also be interpreted by activation energy spectra. Our results reveal the presence of strong liquid-like atomic dynamics confined to the surface of laboratory-made MGs, illuminating the underlying mechanisms for surface engineering design, such as cold joining by ultrasonic vibrations and superlattice growth.
基金the National Natural Science Foundation of China(21978176).
文摘Effect of retanning on the thermal stability of leather is eliciting increasing attention. However, the relationship between the hydrophilicity of retanning agents and the heat resistance of leather and the corresponding mechanism remain unclear. Herein, phenolic formaldehyde syntans (PFSs) were selected as models to explore the effect of the hydrophilicity of retanning agents on the thermal stability of retanned leather. The thermal stability of leather was closely correlated to the hydrophilic group content (sulfonation degree) of PFSs. As the sulfonation degree increased, the water absorption rate of PFSs and their retanned leathers decreased, whereas the thermal stability of leather increased. Molecular dynamics simulation results proved that the introduction of PFSs could reduce the binding ability of collagen molecules with water and thus decreased the water molecules around the PFS-treated collagen. These results may provide guidance for the tanners to select retanning agents reasonably to improve the thermal stability of leather.