Background Restoration of both normal movement of the pelvis and centre of mass is a primary goal of walking rehabilitation in post-stroke patients because these movements are essential components of effective gait. T...Background Restoration of both normal movement of the pelvis and centre of mass is a primary goal of walking rehabilitation in post-stroke patients because these movements are essential components of effective gait. The aim of this study is to quantitatively analyze the effect of ankle-foot orthosis on walking ability, and to investigate the correlation between improvements in trunk motion and walking capacity.展开更多
The pelvis plays a significant role in creating smooth and efficient motion during gait. In this study, an orthosis is designed to support pelvis motion of patients with the inability to walk. This assistive device is...The pelvis plays a significant role in creating smooth and efficient motion during gait. In this study, an orthosis is designed to support pelvis motion of patients with the inability to walk. This assistive device is un-powered and consists of only passive elements. By focusing on the motion of the lower extremities during treadmill walking, a 3D dynamic model of the human body is simulated through a coupled optimization process. Based on two approaches of direct and inverse dynamics, the optimization problems are defined to derive optimum structural parameters of the pelvic orthosis. The optimization results of the direct dynamics problem indicate good matches between the optimized time plots of pelvis rotations with corresponding desired ones. Moreover, by solving the inverse dynamics problem, the minimum value of torque vector of the hip joint of the stance leg during a gait cycle is obtained. Furthermore, by utilizing a prototype of the orthosis, preliminary experiments are conducted on a normal user to validate the model and to investigate the feasibility of using the device for rehabilitation. For this purpose, the rotational movements of the pelvis and energy consumption of the subject in two cases with and without the device are compared during gait on a treadmill. Decreased energy consumption and the compliant motion of the pelvis while using the device verify simulation results and confirm the favorable performance of the assistive device for pelvic support during walking rehabilitation.展开更多
Charcot-Marie-Tooth (CMT) disease, which encompasses several hereditary motor and sensory neuropathies, is one of the most common neuro-muscular disorders. 80% of patients having CMT disease are diagnosed with per cav...Charcot-Marie-Tooth (CMT) disease, which encompasses several hereditary motor and sensory neuropathies, is one of the most common neuro-muscular disorders. 80% of patients having CMT disease are diagnosed with per cavus deformity. Orthosis is widespread and varies widely in forms. The paper arises the necessity of habilitation at the earliest possible stage as only a few patients use it. The meta-analysis of 412 scientific papers concerning this problem demonstrates the getting better gate, balance and the stopping CMT progression which is scientifically proven. It is also shown that patients with CMT use low prevalence of orthotics, and demonstrate low compliance of patients (for various reasons), high expectations from this habilitation technique.展开更多
文摘Background Restoration of both normal movement of the pelvis and centre of mass is a primary goal of walking rehabilitation in post-stroke patients because these movements are essential components of effective gait. The aim of this study is to quantitatively analyze the effect of ankle-foot orthosis on walking ability, and to investigate the correlation between improvements in trunk motion and walking capacity.
文摘The pelvis plays a significant role in creating smooth and efficient motion during gait. In this study, an orthosis is designed to support pelvis motion of patients with the inability to walk. This assistive device is un-powered and consists of only passive elements. By focusing on the motion of the lower extremities during treadmill walking, a 3D dynamic model of the human body is simulated through a coupled optimization process. Based on two approaches of direct and inverse dynamics, the optimization problems are defined to derive optimum structural parameters of the pelvic orthosis. The optimization results of the direct dynamics problem indicate good matches between the optimized time plots of pelvis rotations with corresponding desired ones. Moreover, by solving the inverse dynamics problem, the minimum value of torque vector of the hip joint of the stance leg during a gait cycle is obtained. Furthermore, by utilizing a prototype of the orthosis, preliminary experiments are conducted on a normal user to validate the model and to investigate the feasibility of using the device for rehabilitation. For this purpose, the rotational movements of the pelvis and energy consumption of the subject in two cases with and without the device are compared during gait on a treadmill. Decreased energy consumption and the compliant motion of the pelvis while using the device verify simulation results and confirm the favorable performance of the assistive device for pelvic support during walking rehabilitation.
文摘Charcot-Marie-Tooth (CMT) disease, which encompasses several hereditary motor and sensory neuropathies, is one of the most common neuro-muscular disorders. 80% of patients having CMT disease are diagnosed with per cavus deformity. Orthosis is widespread and varies widely in forms. The paper arises the necessity of habilitation at the earliest possible stage as only a few patients use it. The meta-analysis of 412 scientific papers concerning this problem demonstrates the getting better gate, balance and the stopping CMT progression which is scientifically proven. It is also shown that patients with CMT use low prevalence of orthotics, and demonstrate low compliance of patients (for various reasons), high expectations from this habilitation technique.