Appropriate drying process with optimized controlling of drying parameters plays a vital role in the improvement of the quality and performance of propellant products.However,few research on solvent transport dynamics...Appropriate drying process with optimized controlling of drying parameters plays a vital role in the improvement of the quality and performance of propellant products.However,few research on solvent transport dynamics within NC-based propellants was reported,and its effect on the evolution of mechanical properties was not interpreted yet.This study is conducted to gain a comprehensive understanding of hot-air drying for NC-based propellants and clarify the effect of temperature on solvent transport behavior and further the change of mechanical properties during drying.The drying kinetic curves show the drying time required is decreased but the steady solvent content is increased and the drying rate is obviously increased with the increase of hot-air temperatures,indicating hot-air temperatures have a significant effect on drying kinetics.A modified drying model was established,and results show it is more appropriate to describe solvent transport behavior within NC-based propellants.Moreover,two linear equations were established to exhibit the relationship between solvent content and its effect on the change of tensile properties,and the decrease of residual solvent content causes an obvious increase of tensile strength and tensile modulus of propellant products,indicating its mechanical properties can be partly improved by adjustment of residual solvent content.The outcomes can be used to clarify solvent transport mechanisms and optimize drying process parameters of double-based gun propellants.展开更多
The solubility of 2,3,4-trichloro-1,5-dinitrobenzene(TCDNB) was measured by a laser dynamic method over the temperature range from 278.15 K to 323.15 K under 0.1 MPa in fifteen mono-solvents(methanol,ethanol,isopropan...The solubility of 2,3,4-trichloro-1,5-dinitrobenzene(TCDNB) was measured by a laser dynamic method over the temperature range from 278.15 K to 323.15 K under 0.1 MPa in fifteen mono-solvents(methanol,ethanol,isopropanol,n-butanol,toluene,dichloromethane,chloroform,tetrachloromethane,1,2-dichloroethane,acetone,ethyl acetate,acetonitrile,N-methylpyrrolidone(NMP),N,Ndimethylformamide dimethyl sulfoxide(DMF),dimethyl sulfoxide(DMSO).The solubility of TCDNB could be increased with increasing temperature in fifteen mono-solvents.TCDNB solubility is in the following order at 298.15 K:NMP>DMF>DMSO>toluene>acetone>ethyl acetate>dichloromethane>1,2-dich loroethane>chloroform>acetonitrile>tetrachloromethane>methanol>ethanol>n-butanol>isopropanol.The KAT-LSER model was used to investigate the solvent effect,which revealed that the hydrogen bond acidity of solvents has a greater effect on TCDNB solubility.The van't Hoff model,the modified Apelblat model,theλh model,and the non-random two liquid(NRTL)model were used to correlate the solubility of TCDNB.The calculated solubility data agreed well with the experimental data,and the modified Apelblat model fit best.Furthermore,the van't Hoff and Gibbs equations were also used to calculate the dissolution thermodynamic properties of TCDNB in various solvents.TCDNB dissolution could be an enthalpy-driven,non-spontaneous,and endothermic process in fifteen mono-solvents.The determination and fitting solubility of TCDNB,as well as the calculation of its thermodynamic properties,would be critical in the purification and crystallization of its preparation process research.展开更多
The closed-form solutions of the dynamic problem of heterogeneous piezoelectric materials are formulated by introducing polarizations into a reference medium and using the generalized reciprocity theorem.These solutio...The closed-form solutions of the dynamic problem of heterogeneous piezoelectric materials are formulated by introducing polarizations into a reference medium and using the generalized reciprocity theorem.These solutions can be reduced to the ones of an elastodynamic problem.Based on the effective medium method,these closedform solutions can be used to establish the self-consistent equations about the frequencydependent effective parameters,which can be numerically solved by iteration.Theoretical predictions are compared with the experimental results,and good agreement can be found.Furthermore,the analyses on the effects of microstructure and wavelength on the effective properties,resonance frequencies,and attenuation are also presented,which may provide some guidance for the microstructure design and analysis of piezoelectric composites.展开更多
Based on the density functional theory within the local density approximation (LDA), we studied the electronic, elastic, and dynamic properties of AgNbO<sub>3</sub> and AgTaO<sub>3</sub> compou...Based on the density functional theory within the local density approximation (LDA), we studied the electronic, elastic, and dynamic properties of AgNbO<sub>3</sub> and AgTaO<sub>3</sub> compounds under pressure. The elastic constants, optic and static dielectric constants, born effective charges, and dynamic properties of AgNbO<sub>3</sub> and AgTaO<sub>3</sub> in cubic phase were studied as pressure dependences with the ab initio method. For these compounds, we have also calculated the bulk modulus, Young’s modulus, shear modulus, Vickers hardness, Poisson’s ratio, anisotropy factor, sound velocities, and Debye temperature from the obtained elastic constants. In addition, the brittleness and ductility properties of these compounds were estimated from Poisson’s ratio and Pugh’s rule (G/B). Our calculated values also show that AgNbO<sub>3</sub> (0.37) and AgTaO<sub>3</sub> (0.39) behave as ductile materials and steer away from brittleness by increasing pressure. The calculated values of Vicker hardness for both compounds indicate that they are soft materials. The results show that band gaps, elastic constants, elastic modules, and dynamic properties for both compounds are sensitive to pressure changes. We have also made some comparisons with related experimental and theoretical data that is available in the literature.展开更多
For understanding the rock microscopic damage and dynamic mechanical properties subjected to recurrent freeze-thaw cycles, experiments for five groups of homogeneous sandstone under different freeze-thaw cycles were c...For understanding the rock microscopic damage and dynamic mechanical properties subjected to recurrent freeze-thaw cycles, experiments for five groups of homogeneous sandstone under different freeze-thaw cycles were conducted. After freezethaw, nuclear magnetic resonance(NMR) tests and impact loading tests were carried out, from which microscopic damage characteristics of sandstone and dynamic mechanical parameters were obtained. The results indicate that the porosity increases with the increase of cycle number, the rate of porosity growth descends at the beginning of freeze-thaw, yet accelerates after a certain number of cycles. The proportion of pores with different sizes changes dynamically and the multi-scale distribution of pores tends to develop on pore structure with the continuing impact of freeze-thaw and thawing. Dynamic compressive stress-strain curve of sandstone undergoing freeze-thaw can be divided into four phases, and the phase of compaction is inconspicuous compared with the static curve. Elastic modulus and dynamic peak intensity of sandstone gradually decrease with freeze-thaw cycles, while peak strain increases. The higher the porosity is, the more serious the degradation of dynamic intensity is. The porosity is of a polynomial relationship with the dynamic peak intensity.展开更多
To analyze the effects of strain rate and temperature on the flow stress of 2519A aluminum alloy, the dynamic mechanical properties of 2519A aluminum alloy were measured by dynamic impact tests and quasi-static tensil...To analyze the effects of strain rate and temperature on the flow stress of 2519A aluminum alloy, the dynamic mechanical properties of 2519A aluminum alloy were measured by dynamic impact tests and quasi-static tensile tests. The effects of strain rate and temperature on the microstructure evolution were investigated by optical microscopy (OM) and transmission electron microscopy (TEM). The experimental results indicate that 2519A aluminum alloy exhibits strain-rate dependence and temperature susceptibility under dynamic impact. The constitutive constants for Johnson--Cook material model were determined by the quasi-static tests and Hopkinson bar experiments using the methods of variable separation and nonlinear fitting. The constitutive equation seems to be consistent with the experimental results, which provides reference for mechanical characteristics and numerical simulation of ballistic performance.展开更多
Based on the EAM potential, a molecular dynamics study on the tensile properties of ultrathin nickel nanowires in the (100〉 orientation with diameters of 3.94, 4.95 and 5.99 nm was presented at different temperature...Based on the EAM potential, a molecular dynamics study on the tensile properties of ultrathin nickel nanowires in the (100〉 orientation with diameters of 3.94, 4.95 and 5.99 nm was presented at different temperatures and strain rates. The temperature and strain rate dependences of tensile properties were investigated. The simulation results show that the elastic modulus and the yield strength are gradually decreasing with the increase of temperature, while with the increase of the strain rate, the stress--strain curves fluctuate more intensely and the ultrathin nickel nanowires rupture at one smaller and smaller strain. At an ideal temperature of 0.01 K, the yield strength of the nanowires drops rapidly with the increase of strain rate, and at other temperatures the strain rate has a little influence on the elastic modulus and the yield strength. Finally, the effects of size on the tensile properties of ultrathin nickel nanowires were briefly discussed.展开更多
Mean-square bond length, root-mean-square end-to-end distance and gyration radius in diblock copolymer films have been studied by dissipative particle dynamics simulations. Results show evident linear trends of any pr...Mean-square bond length, root-mean-square end-to-end distance and gyration radius in diblock copolymer films have been studied by dissipative particle dynamics simulations. Results show evident linear trends of any property separately with the thickness of film, the interaction between particles of different types, the repulsion between particle and boundary, except for the dependence of the variations of mean-square bond length on the thickness of film, which exhibits as a wave trend. What's more, the varying trends of mean-square bond length and root-mean-square end-to-end distance can correspond to each other. The density distribution of either component in diblock copolymer film can be controlled and adjusted effectively through its interaction with boundary.展开更多
Investigations on the dynamic mechanical properties and failure mechanisms of coal under in-situ stress is essential for the prevention of dynamic disasters in deep coal mines.Thus,a modified true triaxial Hopkinson b...Investigations on the dynamic mechanical properties and failure mechanisms of coal under in-situ stress is essential for the prevention of dynamic disasters in deep coal mines.Thus,a modified true triaxial Hopkinson bar was employed to explore the dynamic mechanical behaviors of coal at different confining pressures(0–20 MPa)and strain rates(40–220 s^(-1)).The results show that the dynamic peak stress is positively correlated with lateral static pre-stressσy andσz,but negatively correlated with axial static prestressσx.At approximate strain rates,increasing the lateral static pre-stress facilitates increasing the dynamic peak stress,but the minimum lateral static pre-stress is the primary factor limiting a significant increase in dynamic peak stress of coal.Furthermore,the dynamic differential stress is linearly related to the logarithm of strain rate,and the peak strain varies linearly with strain rate.However,there is no significant correlation between confining pressure and peak strain.Moreover,X-ray CT images and photographic fracture observations of coal samples show the failure patterns under uniaxial and triaxial conditions are splitting failure and shear failure,respectively.The device provides a viable approach for fully comprehending the dynamic mechanical behaviors of rock-like material in complex stress conditions.展开更多
As a widely-applied engineering material in cold regions, the frozen subgrade soils are usually subjected to seismic loading, which are also dramatically influenced by the freeze-thaw(F-T)cycles due to the varying tem...As a widely-applied engineering material in cold regions, the frozen subgrade soils are usually subjected to seismic loading, which are also dramatically influenced by the freeze-thaw(F-T)cycles due to the varying temperature. A series of dynamic cyclic triaxial experiments were conducted through a cryogenic triaxial apparatus for exploring the influences of F-T cycles on the dynamic mechanical properties of frozen subgrade clay.According to the experimental results of frozen clay at the temperature of-10℃, the dynamic responses and microstructure variation at different times of F-T cycles(0, 1, 5, and 20 cycles) were explored in detail.It is experimentally demonstrated that the dynamic stress-strain curves and dynamic volumetric strain curves of frozen clay are significantly sparse after 20F-T cycles. Meanwhile, the cyclic number at failure(Nf) of the frozen specimen reduces by 89% after 20freeze-thaw cycles at a low ratio of the dynamic stress amplitude. In addition, with the increasing F-T cycles,the axial accumulative strain, residual deformation,and the value of damage variable of frozen clay increase, while the dynamic resilient modulus and dynamic strength decrease. Finally, the influence of the F-T cycles on the failure mechanisms of frozen clay was discussed in terms of the microstructure variation. These studies contribute to a better understanding of the fundamental changes in the dynamic mechanical of frozen soils exposed to F-T cycles in cold and seismic regions.展开更多
In high-altitude cold areas,freeze-thaw(F-T)cycles induced by day-night and seasonal temperature changes cause numerous rock mass slope engineering disasters.To investigate the dynamic properties of rock in the natura...In high-altitude cold areas,freeze-thaw(F-T)cycles induced by day-night and seasonal temperature changes cause numerous rock mass slope engineering disasters.To investigate the dynamic properties of rock in the natural environment of a high-altitude cold area,standard specimens were drilled from the slope of the Jiama copper mine in Tibet,and dynamic compression tests were performed on watersaturated and frozen sandstone with different numbers of F-T cycles(0,10,20,30,and 40)by the split Hopkinson pressure bar(SHPB)system with a cryogenic control system.The influence of water-saturated and frozen conditions on the dynamic performance of sandstone was investigated.The following conclusions are drawn:(1)With increasing strain rate,the attenuation factor(la)of water-saturated sandstone and the intensifying factor(li)of frozen sandstone linearly increase.As the number of F-T cycles increases,the dependence factor(ld)of water-saturated sandstone linearly decreases,whereas the ld of frozen sandstone linearly increases.(2)The prediction equation of the dynamic compressive strength of water-saturated and frozen sandstone is obtained,which can be used to predict the dynamic compressive strength of sandstone after various F-T cycles based on the strain rate.(3)The mesoscopic mechanism of water-saturated and frozen sandstone’s dynamic compressive strength evolution is investigated.The water softening effect causes the dynamic compressive strength of water-saturated sandstone to decrease,whereas the strengthening effect of pore ice causes it to increase.(4)The decrease in the relative dynamic compressive strength of water-saturated sandstone and the increase in the relative dynamic compressive strength of frozen sandstone can be attributed to the increased porosity.展开更多
The classic metallic Split Hopkinson Pressure Bar(SHPB)cannot capture the transmitted signal accurately when measuring soft biological tissue,because of the very low wave impedance and strength of this material.So the...The classic metallic Split Hopkinson Pressure Bar(SHPB)cannot capture the transmitted signal accurately when measuring soft biological tissue,because of the very low wave impedance and strength of this material.So the dynamic compressive response of porcine muscle has been investigated by using a modified SHPB.The forces on both ends of the sample measured using Polyvinylidene fluor(PVDF)transducers were applied to calculate the stress in the specimen instead of the strain gauge signal on the transmitted bar.Moreover,a circular cardboard disk pulse shaper was applied for generating a suitable incident pulse to achieve stress equilibrium and constant strain rates in the specimens.Then,the dynamic mechanical properties of porcine muscle parallel and perpendicular to the fiber directions were measured,and the stress equilibrium process during loading was analyzed,as well as the inertia-induced extra stress being corrected.Furthermore,quasi-static tests were conducted at two different strain rates to investigate the strain rate dependence using a universal material testing machine.The results show that the stress-strain curves are sensitive to strain rate in the two different loading directions.The compressive stress perpendicular to the fiber direction is stiffer than that parallel to the fiber direction.In addition,a strain rate-dependent constitutive model was developed based on the mechanical response of the muscle at different strain rates and fitted to the experimental data.The results show that the overall fit is good,and the constitutive model could describe the muscle's dynamic mechanical properties.展开更多
We investigated the dynamic evolution and interference phenomena of bubble-shaped Bose-Einstein condensates achievable in a micro-gravity environment.Using numerical solutions of the Gross-Pitaevskii equation describi...We investigated the dynamic evolution and interference phenomena of bubble-shaped Bose-Einstein condensates achievable in a micro-gravity environment.Using numerical solutions of the Gross-Pitaevskii equation describing the dynamic evolution of the bubble-shaped Bose-Einstein condensates,we plotted the evolution of the wave function density distribution on its two-dimensional(2D)cross-section and analysed the resulting patterns.We found that changes in the strength of atomic interactions and initial momentum can affect the dynamic evolution of the bubble-shaped Bose-Einstein condensates and their interference fringes.Notably,we have observed that when the initial momentum is sufficiently high,the thickness of the bubble-shaped Bose-Einstein condensate undergoes a counterintuitive thinning,which is a counterintuitive result that requires further investigation.Our findings are poised to advance our comprehension of the physical essence of bubble-shaped Bose-Einstein condensates and to facilitate the development of relevant experiments in microgravity environments.展开更多
Cemented tailings backfill(CTB) have increasingly been used in recent years to improve the stability of mining stopes in deep underground mines. Deep mining processes are often associated with rock bursting and high-s...Cemented tailings backfill(CTB) have increasingly been used in recent years to improve the stability of mining stopes in deep underground mines. Deep mining processes are often associated with rock bursting and high-speed dynamic loading conditions. Therefore, it is important to investigate the characteristics and dynamic mechanical behavior of CTB. This paper presents the results of dynamic tests on CTB specimens with different cement and solid contents using a split Hopkinson pressure bar(SHPB). The results showed that some CTB specimens exhibited one to two lower stress peaks after reaching dynamic peak stress before they completely failed. The greater the cement-to-tailings ratio is, the more obvious the strain reaction. This property mainly manifested as follows. First,the dynamic peak stress increased with the increase of the cement-to-tailings ratio when the impact velocity was fixed. Second, the dynamic peak stress had a quadratic relationship with the average stress rate. Third, the cement-to-tailings ratio could enhance the increase rate of dynamic peak stress with strain rate. In addition, the dynamic strength enhancement factor K increased with the increase of strain rate, and its value was larger than that of the rock samples. The failure modes of CTB specimens under low-speed impact were tensile failure and X conjugate shear failure, where were nearly the same as those under static uniaxial and triaxial compression. The CTB specimens were crushed and broken under critical strain, a failure mode similar to that of low-strength concrete. The results of the experimental research can improve the understanding of the dynamic mechanical properties of CTB and guide the strength design of deep mining backfills.展开更多
Four-, six-, and eight-membered ring silica nanotubes at temperatures from 300 K to 1600 K are relaxed by classical molecular dynamics simulations with three potential models. The simulation results indicate that the ...Four-, six-, and eight-membered ring silica nanotubes at temperatures from 300 K to 1600 K are relaxed by classical molecular dynamics simulations with three potential models. The simulation results indicate that the stability of the end rings of the three silica nanotubes gradually decreases with increase in temperature. The validity of the vibrational features of silica nanotubes is shown by the vibrational density of states. Infrared spectra on the silica nanotubes under different temperatures are investigated. A detailed assignment of each spectral peak to the corresponding vibrational mode of the three nanotubes has been addressed. The results are in good agreement with the other theoretical and experimental展开更多
The dynamic rheological measurements have been a preferred approach to the characterization of the structure and properties for multi-component or multi-phase polymer systems,due to its sensitive response to changes o...The dynamic rheological measurements have been a preferred approach to the characterization of the structure and properties for multi-component or multi-phase polymer systems,due to its sensitive response to changes of structure for these heterogeneous polymers.In the present article,recent progresses in the studies on dynamic rheology for heterogeneous polymer systems including polymeric composites filled with inorganic particles,thermo-oxidized polyolefins,phase- separated polymeric blends and functional polymers with the scaling and percolation behavior are reviewed,mainly depending on the results by the authors' group.By means of rheological measurements,not only some new fingerprints responsible for the evolution of morphology and structure concerning these polymer systems are obtained,the corresponding results are also significant for the design and preparation of novel polymer-based composites and functional materials.展开更多
A series of Ti–Al–V titanium alloy bars with nominal composition Ti–7Al–5V ELI,Ti–5Al–3V ELI,commercial Ti–6Al–4V ELI and commercial Ti–6Al–4V were prepared.These alloys were then heat treated to obtain bimo...A series of Ti–Al–V titanium alloy bars with nominal composition Ti–7Al–5V ELI,Ti–5Al–3V ELI,commercial Ti–6Al–4V ELI and commercial Ti–6Al–4V were prepared.These alloys were then heat treated to obtain bimodal or equiaxed microstructures with various contents of primary a phase.Dynamic compression properties of the alloys above were studied by split Hopkinson pressure bar system at strain rates from 2,000 to 4,000 s-1.The results show that Ti–6Al–4V alloy with equiaxed primary a(ap)volume fraction of 45 vol%or 67 vol%exhibits good dynamic properties with high dynamic strength and absorbed energy,as well as an acceptable dynamic plasticity.However,all the Ti53ELI specimens and Ti64ELI specimens with ap of 65 vol%were not fractured at a strain rate of4,000 s-1.It appears that the undamaged specimens still have load-bearing capability.Dynamic strength of Ti–Al–V alloy can be improved as the contents of elements Al,V,Fe,and O increase,while dynamic strain is not sensitive to the composition in the appropriate range.The effects of primary alpha volume fraction on the dynamic properties are dependent on the compositions of Ti–Al–V alloys.展开更多
The variation of casting hot spot with proceeding of solidification andcomponents of casting-mold system is studied by the technique of numerical simulation ofsolidification. The result shows that the thickest part of...The variation of casting hot spot with proceeding of solidification andcomponents of casting-mold system is studied by the technique of numerical simulation ofsolidification. The result shows that the thickest part of casting is not exactly the last part ofsolidification in the casting, while the last part of solidification is not exactly casting hot spotat the early stage of solidification. The location, size, shape and number of casting hot spotchange with geomitric, physical and technological factors of the casting-mold system such asthickness of the casting secondary wall and with the passage of time in the course of thesolidification. The former is known as the systematic property of hot spot and the latter, dynamicproperty. Only when the properties of hot spot are grasped completely and accurately, can it be fedmore effectively. By doing so, not only sound castings can be obtained, but also riser efficiencycan be improved.展开更多
In order to get the dynamic mechanical properties of deep rock mass suffered both high temperature and high pressure,impact loading experiments on granite subjected to temperature and axial pressure were carried out. ...In order to get the dynamic mechanical properties of deep rock mass suffered both high temperature and high pressure,impact loading experiments on granite subjected to temperature and axial pressure were carried out. Furthermore, the internalstructure characteristics of granite under different temperatures were observed by scanning electron microscopy (SEM). The results show that the longitudinal wave velocity assumes a downward trend which shows a rapid drop before falling slowly as the temperature increases. The uniaxial compressive strength of the specimen decreases significantly at temperatures of 25?100 °C compared to that at temperatures of 100?300 °C. The peak strain rises rapidly before the dividing point of 100 °C, but increases slowly after the dividing point. The internal structure of the rock changes substantially as the temperature increases, such as the extension and transfixion of primary and newborn cracks. In addition, the thermal damage under axial pressure is greater than that described by the longitudinal wave velocity and the phenomenon shows obviously when the temperature increases.展开更多
The paper is devoted to mathematical modelling of static and dynamic stability of a simply supported three-layered beam with a metal foam core. Mechanical properties of the core vary along the vertical direction. The ...The paper is devoted to mathematical modelling of static and dynamic stability of a simply supported three-layered beam with a metal foam core. Mechanical properties of the core vary along the vertical direction. The field of displacements is for- mulated using the classical broken line hypothesis and the proposed nonlinear hypothesis that generalizes the classical one. Using both hypotheses, the strains are determined as well as the stresses of each layer. The kinetic energy, the elastic strain energy, and the work of load are also determined. The system of equations of motion is derived using Hamilton's principle. Finally, the system of three equations is reduced to one equation of motion, in particular, the Mathieu equation. The Bubnov-Galerkin method is used to solve the system of equations of motion, and the Runge-Kutta method is used to solve the second-order differential equation. Numerical calculations are done for the chosen family of beams. The critical loads, unstable regions, angular frequencies of the beam, and the static and dynamic equilibrium paths are calculated analytically and verified numerically. The results of this study are presented in the forms of figures and tables.展开更多
基金the National Natural Science Foundation of China(Grant No.22075146).
文摘Appropriate drying process with optimized controlling of drying parameters plays a vital role in the improvement of the quality and performance of propellant products.However,few research on solvent transport dynamics within NC-based propellants was reported,and its effect on the evolution of mechanical properties was not interpreted yet.This study is conducted to gain a comprehensive understanding of hot-air drying for NC-based propellants and clarify the effect of temperature on solvent transport behavior and further the change of mechanical properties during drying.The drying kinetic curves show the drying time required is decreased but the steady solvent content is increased and the drying rate is obviously increased with the increase of hot-air temperatures,indicating hot-air temperatures have a significant effect on drying kinetics.A modified drying model was established,and results show it is more appropriate to describe solvent transport behavior within NC-based propellants.Moreover,two linear equations were established to exhibit the relationship between solvent content and its effect on the change of tensile properties,and the decrease of residual solvent content causes an obvious increase of tensile strength and tensile modulus of propellant products,indicating its mechanical properties can be partly improved by adjustment of residual solvent content.The outcomes can be used to clarify solvent transport mechanisms and optimize drying process parameters of double-based gun propellants.
文摘The solubility of 2,3,4-trichloro-1,5-dinitrobenzene(TCDNB) was measured by a laser dynamic method over the temperature range from 278.15 K to 323.15 K under 0.1 MPa in fifteen mono-solvents(methanol,ethanol,isopropanol,n-butanol,toluene,dichloromethane,chloroform,tetrachloromethane,1,2-dichloroethane,acetone,ethyl acetate,acetonitrile,N-methylpyrrolidone(NMP),N,Ndimethylformamide dimethyl sulfoxide(DMF),dimethyl sulfoxide(DMSO).The solubility of TCDNB could be increased with increasing temperature in fifteen mono-solvents.TCDNB solubility is in the following order at 298.15 K:NMP>DMF>DMSO>toluene>acetone>ethyl acetate>dichloromethane>1,2-dich loroethane>chloroform>acetonitrile>tetrachloromethane>methanol>ethanol>n-butanol>isopropanol.The KAT-LSER model was used to investigate the solvent effect,which revealed that the hydrogen bond acidity of solvents has a greater effect on TCDNB solubility.The van't Hoff model,the modified Apelblat model,theλh model,and the non-random two liquid(NRTL)model were used to correlate the solubility of TCDNB.The calculated solubility data agreed well with the experimental data,and the modified Apelblat model fit best.Furthermore,the van't Hoff and Gibbs equations were also used to calculate the dissolution thermodynamic properties of TCDNB in various solvents.TCDNB dissolution could be an enthalpy-driven,non-spontaneous,and endothermic process in fifteen mono-solvents.The determination and fitting solubility of TCDNB,as well as the calculation of its thermodynamic properties,would be critical in the purification and crystallization of its preparation process research.
基金Project supported by the National Natural Science Foundation of China(No.12072240)。
文摘The closed-form solutions of the dynamic problem of heterogeneous piezoelectric materials are formulated by introducing polarizations into a reference medium and using the generalized reciprocity theorem.These solutions can be reduced to the ones of an elastodynamic problem.Based on the effective medium method,these closedform solutions can be used to establish the self-consistent equations about the frequencydependent effective parameters,which can be numerically solved by iteration.Theoretical predictions are compared with the experimental results,and good agreement can be found.Furthermore,the analyses on the effects of microstructure and wavelength on the effective properties,resonance frequencies,and attenuation are also presented,which may provide some guidance for the microstructure design and analysis of piezoelectric composites.
文摘Based on the density functional theory within the local density approximation (LDA), we studied the electronic, elastic, and dynamic properties of AgNbO<sub>3</sub> and AgTaO<sub>3</sub> compounds under pressure. The elastic constants, optic and static dielectric constants, born effective charges, and dynamic properties of AgNbO<sub>3</sub> and AgTaO<sub>3</sub> in cubic phase were studied as pressure dependences with the ab initio method. For these compounds, we have also calculated the bulk modulus, Young’s modulus, shear modulus, Vickers hardness, Poisson’s ratio, anisotropy factor, sound velocities, and Debye temperature from the obtained elastic constants. In addition, the brittleness and ductility properties of these compounds were estimated from Poisson’s ratio and Pugh’s rule (G/B). Our calculated values also show that AgNbO<sub>3</sub> (0.37) and AgTaO<sub>3</sub> (0.39) behave as ductile materials and steer away from brittleness by increasing pressure. The calculated values of Vicker hardness for both compounds indicate that they are soft materials. The results show that band gaps, elastic constants, elastic modules, and dynamic properties for both compounds are sensitive to pressure changes. We have also made some comparisons with related experimental and theoretical data that is available in the literature.
基金Project(2013YQ17046310)supported by the National Key Scientific Instrument and Equipment Development Project of ChinaProject(2013M542138)supported by China Postdoctoral Science FoundationProjects(20130162110010,20130162120012)supported by Specialized Research Fund for the Doctoral Program of Higher Education of China
文摘For understanding the rock microscopic damage and dynamic mechanical properties subjected to recurrent freeze-thaw cycles, experiments for five groups of homogeneous sandstone under different freeze-thaw cycles were conducted. After freezethaw, nuclear magnetic resonance(NMR) tests and impact loading tests were carried out, from which microscopic damage characteristics of sandstone and dynamic mechanical parameters were obtained. The results indicate that the porosity increases with the increase of cycle number, the rate of porosity growth descends at the beginning of freeze-thaw, yet accelerates after a certain number of cycles. The proportion of pores with different sizes changes dynamically and the multi-scale distribution of pores tends to develop on pore structure with the continuing impact of freeze-thaw and thawing. Dynamic compressive stress-strain curve of sandstone undergoing freeze-thaw can be divided into four phases, and the phase of compaction is inconspicuous compared with the static curve. Elastic modulus and dynamic peak intensity of sandstone gradually decrease with freeze-thaw cycles, while peak strain increases. The higher the porosity is, the more serious the degradation of dynamic intensity is. The porosity is of a polynomial relationship with the dynamic peak intensity.
基金Project(51105139)supported by the National Natural Science Foundation of ChinaProject(14JJ5015)supported by the Hunan Provincial Natural Science Foundation of ChinaProject(HPCM-2013-03)supported by the Open Research Fund of Key Laboratory of High Performance Complex Manufacturing,Central South University,China
文摘To analyze the effects of strain rate and temperature on the flow stress of 2519A aluminum alloy, the dynamic mechanical properties of 2519A aluminum alloy were measured by dynamic impact tests and quasi-static tensile tests. The effects of strain rate and temperature on the microstructure evolution were investigated by optical microscopy (OM) and transmission electron microscopy (TEM). The experimental results indicate that 2519A aluminum alloy exhibits strain-rate dependence and temperature susceptibility under dynamic impact. The constitutive constants for Johnson--Cook material model were determined by the quasi-static tests and Hopkinson bar experiments using the methods of variable separation and nonlinear fitting. The constitutive equation seems to be consistent with the experimental results, which provides reference for mechanical characteristics and numerical simulation of ballistic performance.
基金Project(51205302)supported by the National Natural Science Foundation of ChinaProject(2013JM7017)supported by the Natural Science Basic Research Plan in Shanxi Province of ChinaProject(K5051304006)supported by the Fundamental Research Funds for the Central Universities,China
文摘Based on the EAM potential, a molecular dynamics study on the tensile properties of ultrathin nickel nanowires in the (100〉 orientation with diameters of 3.94, 4.95 and 5.99 nm was presented at different temperatures and strain rates. The temperature and strain rate dependences of tensile properties were investigated. The simulation results show that the elastic modulus and the yield strength are gradually decreasing with the increase of temperature, while with the increase of the strain rate, the stress--strain curves fluctuate more intensely and the ultrathin nickel nanowires rupture at one smaller and smaller strain. At an ideal temperature of 0.01 K, the yield strength of the nanowires drops rapidly with the increase of strain rate, and at other temperatures the strain rate has a little influence on the elastic modulus and the yield strength. Finally, the effects of size on the tensile properties of ultrathin nickel nanowires were briefly discussed.
文摘Mean-square bond length, root-mean-square end-to-end distance and gyration radius in diblock copolymer films have been studied by dissipative particle dynamics simulations. Results show evident linear trends of any property separately with the thickness of film, the interaction between particles of different types, the repulsion between particle and boundary, except for the dependence of the variations of mean-square bond length on the thickness of film, which exhibits as a wave trend. What's more, the varying trends of mean-square bond length and root-mean-square end-to-end distance can correspond to each other. The density distribution of either component in diblock copolymer film can be controlled and adjusted effectively through its interaction with boundary.
基金the National Key Research and Development Program of China(Nos.2019YFE0118500 and 2019YFC1904304)National Natural Science Foundation of China(Nos.52104107 and U22A20598)Natural Science Foundation of Jiangsu Province(No.BK20200634).
文摘Investigations on the dynamic mechanical properties and failure mechanisms of coal under in-situ stress is essential for the prevention of dynamic disasters in deep coal mines.Thus,a modified true triaxial Hopkinson bar was employed to explore the dynamic mechanical behaviors of coal at different confining pressures(0–20 MPa)and strain rates(40–220 s^(-1)).The results show that the dynamic peak stress is positively correlated with lateral static pre-stressσy andσz,but negatively correlated with axial static prestressσx.At approximate strain rates,increasing the lateral static pre-stress facilitates increasing the dynamic peak stress,but the minimum lateral static pre-stress is the primary factor limiting a significant increase in dynamic peak stress of coal.Furthermore,the dynamic differential stress is linearly related to the logarithm of strain rate,and the peak strain varies linearly with strain rate.However,there is no significant correlation between confining pressure and peak strain.Moreover,X-ray CT images and photographic fracture observations of coal samples show the failure patterns under uniaxial and triaxial conditions are splitting failure and shear failure,respectively.The device provides a viable approach for fully comprehending the dynamic mechanical behaviors of rock-like material in complex stress conditions.
基金the National Natural Science Foundation of China (NSFC)(Grant Nos.U22A20596 and 41771066)the Science and Technology Project of Qinghai-Tibet Railway Company (QZ2021-G03)。
文摘As a widely-applied engineering material in cold regions, the frozen subgrade soils are usually subjected to seismic loading, which are also dramatically influenced by the freeze-thaw(F-T)cycles due to the varying temperature. A series of dynamic cyclic triaxial experiments were conducted through a cryogenic triaxial apparatus for exploring the influences of F-T cycles on the dynamic mechanical properties of frozen subgrade clay.According to the experimental results of frozen clay at the temperature of-10℃, the dynamic responses and microstructure variation at different times of F-T cycles(0, 1, 5, and 20 cycles) were explored in detail.It is experimentally demonstrated that the dynamic stress-strain curves and dynamic volumetric strain curves of frozen clay are significantly sparse after 20F-T cycles. Meanwhile, the cyclic number at failure(Nf) of the frozen specimen reduces by 89% after 20freeze-thaw cycles at a low ratio of the dynamic stress amplitude. In addition, with the increasing F-T cycles,the axial accumulative strain, residual deformation,and the value of damage variable of frozen clay increase, while the dynamic resilient modulus and dynamic strength decrease. Finally, the influence of the F-T cycles on the failure mechanisms of frozen clay was discussed in terms of the microstructure variation. These studies contribute to a better understanding of the fundamental changes in the dynamic mechanical of frozen soils exposed to F-T cycles in cold and seismic regions.
基金supported by the Hunan Provincial Natural Science Foundation of China(Grant No.2020JJ4704)the Fundamental Research Funds for the Central Universities of Central South University,China(Grant Nos.2021zzts0881 and 2021zzts0279).
文摘In high-altitude cold areas,freeze-thaw(F-T)cycles induced by day-night and seasonal temperature changes cause numerous rock mass slope engineering disasters.To investigate the dynamic properties of rock in the natural environment of a high-altitude cold area,standard specimens were drilled from the slope of the Jiama copper mine in Tibet,and dynamic compression tests were performed on watersaturated and frozen sandstone with different numbers of F-T cycles(0,10,20,30,and 40)by the split Hopkinson pressure bar(SHPB)system with a cryogenic control system.The influence of water-saturated and frozen conditions on the dynamic performance of sandstone was investigated.The following conclusions are drawn:(1)With increasing strain rate,the attenuation factor(la)of water-saturated sandstone and the intensifying factor(li)of frozen sandstone linearly increase.As the number of F-T cycles increases,the dependence factor(ld)of water-saturated sandstone linearly decreases,whereas the ld of frozen sandstone linearly increases.(2)The prediction equation of the dynamic compressive strength of water-saturated and frozen sandstone is obtained,which can be used to predict the dynamic compressive strength of sandstone after various F-T cycles based on the strain rate.(3)The mesoscopic mechanism of water-saturated and frozen sandstone’s dynamic compressive strength evolution is investigated.The water softening effect causes the dynamic compressive strength of water-saturated sandstone to decrease,whereas the strengthening effect of pore ice causes it to increase.(4)The decrease in the relative dynamic compressive strength of water-saturated sandstone and the increase in the relative dynamic compressive strength of frozen sandstone can be attributed to the increased porosity.
基金supported by the National Natural Science Foundation of China(Grant No.11872215)the National Defense Basic Scientific Research program of China(Grant No.JCKYS2019209C001)the Fundamental Strengthening Program of the Military Science and Technology Commission Technical Field Foundation(2020-JCJQ-JJ-403).
文摘The classic metallic Split Hopkinson Pressure Bar(SHPB)cannot capture the transmitted signal accurately when measuring soft biological tissue,because of the very low wave impedance and strength of this material.So the dynamic compressive response of porcine muscle has been investigated by using a modified SHPB.The forces on both ends of the sample measured using Polyvinylidene fluor(PVDF)transducers were applied to calculate the stress in the specimen instead of the strain gauge signal on the transmitted bar.Moreover,a circular cardboard disk pulse shaper was applied for generating a suitable incident pulse to achieve stress equilibrium and constant strain rates in the specimens.Then,the dynamic mechanical properties of porcine muscle parallel and perpendicular to the fiber directions were measured,and the stress equilibrium process during loading was analyzed,as well as the inertia-induced extra stress being corrected.Furthermore,quasi-static tests were conducted at two different strain rates to investigate the strain rate dependence using a universal material testing machine.The results show that the stress-strain curves are sensitive to strain rate in the two different loading directions.The compressive stress perpendicular to the fiber direction is stiffer than that parallel to the fiber direction.In addition,a strain rate-dependent constitutive model was developed based on the mechanical response of the muscle at different strain rates and fitted to the experimental data.The results show that the overall fit is good,and the constitutive model could describe the muscle's dynamic mechanical properties.
基金the National Key Research and Development Program of China(Grant Nos.2021YFA1400900,2021YFA0718300,and 2021YFA1402100)the National Natural Science Foundation of China(Grant Nos.61835013,12174461,12234012,and 12334012)the Space Application System of China Manned Space Program。
文摘We investigated the dynamic evolution and interference phenomena of bubble-shaped Bose-Einstein condensates achievable in a micro-gravity environment.Using numerical solutions of the Gross-Pitaevskii equation describing the dynamic evolution of the bubble-shaped Bose-Einstein condensates,we plotted the evolution of the wave function density distribution on its two-dimensional(2D)cross-section and analysed the resulting patterns.We found that changes in the strength of atomic interactions and initial momentum can affect the dynamic evolution of the bubble-shaped Bose-Einstein condensates and their interference fringes.Notably,we have observed that when the initial momentum is sufficiently high,the thickness of the bubble-shaped Bose-Einstein condensate undergoes a counterintuitive thinning,which is a counterintuitive result that requires further investigation.Our findings are poised to advance our comprehension of the physical essence of bubble-shaped Bose-Einstein condensates and to facilitate the development of relevant experiments in microgravity environments.
基金financially supported by the National Key R&D Program of China (No. 2018YFC0604602)the Fundamental Research Funds for the Central Universities of China (No. FRF-TP-17-029A2)the Open fund of Key Laboratory of High-Efficient Mining and Safety of Metal Mines, Ministry of Education of China (No. ustbmslab201803)
文摘Cemented tailings backfill(CTB) have increasingly been used in recent years to improve the stability of mining stopes in deep underground mines. Deep mining processes are often associated with rock bursting and high-speed dynamic loading conditions. Therefore, it is important to investigate the characteristics and dynamic mechanical behavior of CTB. This paper presents the results of dynamic tests on CTB specimens with different cement and solid contents using a split Hopkinson pressure bar(SHPB). The results showed that some CTB specimens exhibited one to two lower stress peaks after reaching dynamic peak stress before they completely failed. The greater the cement-to-tailings ratio is, the more obvious the strain reaction. This property mainly manifested as follows. First,the dynamic peak stress increased with the increase of the cement-to-tailings ratio when the impact velocity was fixed. Second, the dynamic peak stress had a quadratic relationship with the average stress rate. Third, the cement-to-tailings ratio could enhance the increase rate of dynamic peak stress with strain rate. In addition, the dynamic strength enhancement factor K increased with the increase of strain rate, and its value was larger than that of the rock samples. The failure modes of CTB specimens under low-speed impact were tensile failure and X conjugate shear failure, where were nearly the same as those under static uniaxial and triaxial compression. The CTB specimens were crushed and broken under critical strain, a failure mode similar to that of low-strength concrete. The results of the experimental research can improve the understanding of the dynamic mechanical properties of CTB and guide the strength design of deep mining backfills.
文摘Four-, six-, and eight-membered ring silica nanotubes at temperatures from 300 K to 1600 K are relaxed by classical molecular dynamics simulations with three potential models. The simulation results indicate that the stability of the end rings of the three silica nanotubes gradually decreases with increase in temperature. The validity of the vibrational features of silica nanotubes is shown by the vibrational density of states. Infrared spectra on the silica nanotubes under different temperatures are investigated. A detailed assignment of each spectral peak to the corresponding vibrational mode of the three nanotubes has been addressed. The results are in good agreement with the other theoretical and experimental
基金This work was supported by the National Natural Science Foundation for Distinguished Young Scholars(No.50125312)Key Program of National Science Foundation of China(No.50133020)National Natural Science Foundation of China(No.50373037)
文摘The dynamic rheological measurements have been a preferred approach to the characterization of the structure and properties for multi-component or multi-phase polymer systems,due to its sensitive response to changes of structure for these heterogeneous polymers.In the present article,recent progresses in the studies on dynamic rheology for heterogeneous polymer systems including polymeric composites filled with inorganic particles,thermo-oxidized polyolefins,phase- separated polymeric blends and functional polymers with the scaling and percolation behavior are reviewed,mainly depending on the results by the authors' group.By means of rheological measurements,not only some new fingerprints responsible for the evolution of morphology and structure concerning these polymer systems are obtained,the corresponding results are also significant for the design and preparation of novel polymer-based composites and functional materials.
基金supported by the China–Korea Joint Research Program of Ministry of Science and Technology of China (No. 2012DFG51540)
文摘A series of Ti–Al–V titanium alloy bars with nominal composition Ti–7Al–5V ELI,Ti–5Al–3V ELI,commercial Ti–6Al–4V ELI and commercial Ti–6Al–4V were prepared.These alloys were then heat treated to obtain bimodal or equiaxed microstructures with various contents of primary a phase.Dynamic compression properties of the alloys above were studied by split Hopkinson pressure bar system at strain rates from 2,000 to 4,000 s-1.The results show that Ti–6Al–4V alloy with equiaxed primary a(ap)volume fraction of 45 vol%or 67 vol%exhibits good dynamic properties with high dynamic strength and absorbed energy,as well as an acceptable dynamic plasticity.However,all the Ti53ELI specimens and Ti64ELI specimens with ap of 65 vol%were not fractured at a strain rate of4,000 s-1.It appears that the undamaged specimens still have load-bearing capability.Dynamic strength of Ti–Al–V alloy can be improved as the contents of elements Al,V,Fe,and O increase,while dynamic strain is not sensitive to the composition in the appropriate range.The effects of primary alpha volume fraction on the dynamic properties are dependent on the compositions of Ti–Al–V alloys.
基金This project is supported by Science Technology Development Foundation of Shanghai(No.0lJCl400l)+1 种基金Scientific Foundation of Hebei University of ScienceTechnology (No.XZ9906)
文摘The variation of casting hot spot with proceeding of solidification andcomponents of casting-mold system is studied by the technique of numerical simulation ofsolidification. The result shows that the thickest part of casting is not exactly the last part ofsolidification in the casting, while the last part of solidification is not exactly casting hot spotat the early stage of solidification. The location, size, shape and number of casting hot spotchange with geomitric, physical and technological factors of the casting-mold system such asthickness of the casting secondary wall and with the passage of time in the course of thesolidification. The former is known as the systematic property of hot spot and the latter, dynamicproperty. Only when the properties of hot spot are grasped completely and accurately, can it be fedmore effectively. By doing so, not only sound castings can be obtained, but also riser efficiencycan be improved.
基金Project(51304241)supported by the Youth Project of National Natural Science Foundation of ChinaProject(2014M552164)supported by Chinese Postdoctoral Science FoundationProject(20130162120015)supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China
文摘In order to get the dynamic mechanical properties of deep rock mass suffered both high temperature and high pressure,impact loading experiments on granite subjected to temperature and axial pressure were carried out. Furthermore, the internalstructure characteristics of granite under different temperatures were observed by scanning electron microscopy (SEM). The results show that the longitudinal wave velocity assumes a downward trend which shows a rapid drop before falling slowly as the temperature increases. The uniaxial compressive strength of the specimen decreases significantly at temperatures of 25?100 °C compared to that at temperatures of 100?300 °C. The peak strain rises rapidly before the dividing point of 100 °C, but increases slowly after the dividing point. The internal structure of the rock changes substantially as the temperature increases, such as the extension and transfixion of primary and newborn cracks. In addition, the thermal damage under axial pressure is greater than that described by the longitudinal wave velocity and the phenomenon shows obviously when the temperature increases.
基金Project supported by the Ministry of Science and Higher Education of Poland(Nos.04/43/DSPB/0085and 02/21/DSPB/3464)
文摘The paper is devoted to mathematical modelling of static and dynamic stability of a simply supported three-layered beam with a metal foam core. Mechanical properties of the core vary along the vertical direction. The field of displacements is for- mulated using the classical broken line hypothesis and the proposed nonlinear hypothesis that generalizes the classical one. Using both hypotheses, the strains are determined as well as the stresses of each layer. The kinetic energy, the elastic strain energy, and the work of load are also determined. The system of equations of motion is derived using Hamilton's principle. Finally, the system of three equations is reduced to one equation of motion, in particular, the Mathieu equation. The Bubnov-Galerkin method is used to solve the system of equations of motion, and the Runge-Kutta method is used to solve the second-order differential equation. Numerical calculations are done for the chosen family of beams. The critical loads, unstable regions, angular frequencies of the beam, and the static and dynamic equilibrium paths are calculated analytically and verified numerically. The results of this study are presented in the forms of figures and tables.