期刊文献+
共找到44篇文章
< 1 2 3 >
每页显示 20 50 100
Predicting dynamic compressive strength of frozen-thawed rocks by characteristic impedance and data-driven methods
1
作者 Shengtao Zhou Zong-Xian Zhang +3 位作者 Xuedong Luo Yifan Huang Zhi Yu Xiaowei Yang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第7期2591-2606,共16页
In cold regions,the dynamic compressive strength(DCS)of rock damaged by freeze-thaw weathering significantly influences the stability of rock engineering.Nevertheless,testing the dynamic strength under freeze-thaw wea... In cold regions,the dynamic compressive strength(DCS)of rock damaged by freeze-thaw weathering significantly influences the stability of rock engineering.Nevertheless,testing the dynamic strength under freeze-thaw weathering conditions is often both time-consuming and expensive.Therefore,this study considers the effect of characteristic impedance on DCS and aims to quickly determine the DCS of frozen-thawed rocks through the application of machine-learning techniques.Initially,a database of DCS for frozen-thawed rocks,comprising 216 rock specimens,was compiled.Three external load parameters(freeze-thaw cycle number,confining pressure,and impact pressure)and two rock parameters(characteristic impedance and porosity)were selected as input variables,with DCS as the predicted target.This research optimized the kernel scale,penalty factor,and insensitive loss coefficient of the support vector regression(SVR)model using five swarm intelligent optimization algorithms,leading to the development of five hybrid models.In addition,a statistical DCS prediction equation using multiple linear regression techniques was developed.The performance of the prediction models was comprehensively evaluated using two error indexes and two trend indexes.A sensitivity analysis based on the cosine amplitude method has also been conducted.The results demonstrate that the proposed hybrid SVR-based models consistently provided accurate DCS predictions.Among these models,the SVR model optimized with the chameleon swarm algorithm exhibited the best performance,with metrics indicating its effectiveness,including root mean square error(RMSE)﹦3.9675,mean absolute error(MAE)﹦2.9673,coefficient of determination(R^(2))﹦0.98631,and variance accounted for(VAF)﹦98.634.This suggests that the chameleon swarm algorithm yielded the most optimal results for enhancing SVR models.Notably,impact pressure and characteristic impedance emerged as the two most influential parameters in DCS prediction.This research is anticipated to serve as a reliable reference for estimating the DCS of rocks subjected to freeze-thaw weathering. 展开更多
关键词 Freeze-thaw cycle Characteristic impedance dynamic compressive strength Machine learning Support vector regression
下载PDF
An Arbitrarily High Order and Asymptotic Preserving Kinetic Scheme in Compressible Fluid Dynamic
2
作者 Remi Abgrall Fatemeh Nassajian Mojarrad 《Communications on Applied Mathematics and Computation》 EI 2024年第2期963-991,共29页
We present a class of arbitrarily high order fully explicit kinetic numerical methods in compressible fluid dynamics,both in time and space,which include the relaxation schemes by Jin and Xin.These methods can use the... We present a class of arbitrarily high order fully explicit kinetic numerical methods in compressible fluid dynamics,both in time and space,which include the relaxation schemes by Jin and Xin.These methods can use the CFL number larger or equal to unity on regular Cartesian meshes for the multi-dimensional case.These kinetic models depend on a small parameter that can be seen as a"Knudsen"number.The method is asymptotic preserving in this Knudsen number.Also,the computational costs of the method are of the same order of a fully explicit scheme.This work is the extension of Abgrall et al.(2022)[3]to multidimensional systems.We have assessed our method on several problems for two-dimensional scalar problems and Euler equations and the scheme has proven to be robust and to achieve the theoretically predicted high order of accuracy on smooth solutions. 展开更多
关键词 Kinetic scheme Compressible fluid dynamics High order methods Explicit schemes Asymptotic preserving Defect correction method
下载PDF
Microscopic damage and dynamic mechanical properties of rock under freeze-thaw environment 被引量:25
3
作者 周科平 李斌 +2 位作者 李杰林 邓红卫 宾峰 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第4期1254-1261,共8页
For understanding the rock microscopic damage and dynamic mechanical properties subjected to recurrent freeze-thaw cycles, experiments for five groups of homogeneous sandstone under different freeze-thaw cycles were c... For understanding the rock microscopic damage and dynamic mechanical properties subjected to recurrent freeze-thaw cycles, experiments for five groups of homogeneous sandstone under different freeze-thaw cycles were conducted. After freezethaw, nuclear magnetic resonance(NMR) tests and impact loading tests were carried out, from which microscopic damage characteristics of sandstone and dynamic mechanical parameters were obtained. The results indicate that the porosity increases with the increase of cycle number, the rate of porosity growth descends at the beginning of freeze-thaw, yet accelerates after a certain number of cycles. The proportion of pores with different sizes changes dynamically and the multi-scale distribution of pores tends to develop on pore structure with the continuing impact of freeze-thaw and thawing. Dynamic compressive stress-strain curve of sandstone undergoing freeze-thaw can be divided into four phases, and the phase of compaction is inconspicuous compared with the static curve. Elastic modulus and dynamic peak intensity of sandstone gradually decrease with freeze-thaw cycles, while peak strain increases. The higher the porosity is, the more serious the degradation of dynamic intensity is. The porosity is of a polynomial relationship with the dynamic peak intensity. 展开更多
关键词 ROCK freeze-thaw cycle nuclear magnetic resonance(NMR) pore structure dynamic mechanical property dynamic compression stress-strain curve
下载PDF
Microstructural evolution of zirconium alloy under dynamic compression at strain rate of 1000s^(-1)
4
作者 邹东利 栾佰峰 刘庆 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第10期2402-2408,共7页
Microstructural evolution of the zirconium alloy deformed at a strain rate of about 1000 s-1 was investigated. Four different strain levels of the zirconium alloy subjected to dynamic compression were designed by seve... Microstructural evolution of the zirconium alloy deformed at a strain rate of about 1000 s-1 was investigated. Four different strain levels of the zirconium alloy subjected to dynamic compression were designed by several-times impacting at almost the same strain rate. The results show that abundant low angle boundaries at different strain levels were observed in the deformed microstructures, and the quantity and density of low angle boundary increase dramatically with the strain increasing. Besides low angle boundaries and high angle boundaries observed in grain boundary maps, the twin boundaries including the tensile twins {10 2}, {11 1} and compressive twins {11 2} were distinguished at different strain levels, and most twin boundaries were indexed as {10 2} twins. With the stain increasing, the twin boundary density in the deformed microstructures increases indistinctively. Based on the characterization of the deformed microstructures at the different strain levels, the deformation and evolution processes of the zirconium alloy subjected to dynamic loading were proposed. Microhardness measurements show that the microhardness in the impacted specimens increases gradually with the strain increasing, which should be associated with the strain hardening caused by the tangled dislocation. 展开更多
关键词 zirconium alloy dynamic compression plastic deformation
下载PDF
Dynamic compressive property and failure behavior of extruded Mg-Gd-Y alloy under high temperatures and high strain rates 被引量:9
5
作者 Jin-cheng Yu Zheng Liu +1 位作者 Yang Dong Zhi Wang 《Journal of Magnesium and Alloys》 SCIE EI CAS 2015年第2期134-141,共8页
For the purpose of investigating the dynamic deformational behavior and failure mechanisms of magnesium under high strain rates,the Split Hopkinson Pressure Bar(SHPB)was used for investigating dynamic mechanical prope... For the purpose of investigating the dynamic deformational behavior and failure mechanisms of magnesium under high strain rates,the Split Hopkinson Pressure Bar(SHPB)was used for investigating dynamic mechanical properties of extruded Mg-Gd-Y Magnesium alloy at ambient temperature(300 K),200℃(473 K)and 300℃(573 K)temperature.The samples after compression were analyzed by scanning electron microscope(SEM)and metallographic microscope.Dynamic mechanical properties,crack performance and plastic deformation mechanism of extruded Mg-Gd-Y Magnesium alloy along the extrusion direction(ED)were discussed.The results show that,extruded Mg-Gd-Y Magnesium alloy has the largest dynamic compressive strength which is 535 MPa at ambient temperature(300 K)and strain rate of 2826 s^(−1).When temperature increases,dynamic compressive strength decreases,while ductility increases.The dynamic compression fracture mechanism of extruded Mg-Gd-Y Magnesium alloy is multi-crack propagation and intergranular quasi-cleavage fracture at both ambient temperature and high temperature.The dynamic compressive deformation mechanism of extruded Mg-Gd-Y Magnesium alloy is a combination of twinning,slipping and dynamic recrystallization at both ambient temperature and high temperature. 展开更多
关键词 Extruded Mg-Gd-Y magnesium alloy Split Hopkinson Pressure Bar dynamic compressive property Failure behavior High strain rates High temperature
下载PDF
A double-network hydrogel for the dynamic compression of the lumbar nerve root 被引量:6
6
作者 Hui Li Hua Meng +4 位作者 Yan-Yu Yang Jia-Xi Huang Yong-Jie Chen Fei Yang Jia-Zhi Yan 《Neural Regeneration Research》 SCIE CAS CSCD 2020年第9期1724-1731,共8页
Current animal models of nerve root compression due to lumbar disc herniation only assess the mechanical compression of nerve roots and the inflammatory response. Moreover, the pressure applied in these models is stat... Current animal models of nerve root compression due to lumbar disc herniation only assess the mechanical compression of nerve roots and the inflammatory response. Moreover, the pressure applied in these models is static, meaning that the nerve root cannot be dynamically compressed. This is very different from the pathogenesis of lumbar disc herniation. In this study, a chitosan/polyacrylamide double-network hydrogel was prepared by a simple two-step method. The swelling ratio of the double-network hydrogel increased with prolonged time, reaching 140. The compressive strength and compressive modulus of the hydrogel reached 53.6 and 0.34 MPa, respectively. Scanning electron microscopy revealed the hydrogel's crosslinked structure with many interconnecting pores. An MTT assay demonstrated that the number of viable cells in contact with the hydrogel extracts did not significantly change relative to the control surface. Thus, the hydrogel had good biocompatibility. Finally, the double-network hydrogel was used to compress the L4 nerve root of male sand rats to simulate lumbar disc herniation nerve root compression. The hydrogel remained in its original position after compression, and swelled with increasing time. Edema appeared around the nerve root and disappeared 3 weeks after operation. This chitosan/polyacrylamide double-network hydrogel has potential as a new implant material for animal models of lumbar nerve root compression. All animal experiments were approved by the Animal Ethics Committee of Neurosurgical Institute of Beijing, Capital Medical University, China(approval No. 201601006) on July 29, 2016. 展开更多
关键词 CHITOSAN double-network hydrogel dynamic compression lumbar disc herniation micro-MRI nerve root peripheral neuropathic pain POLYACRYLAMIDE
下载PDF
Dynamic fragmentation of microwave irradiated rock 被引量:5
7
作者 Shuai Wang Ying Xu +1 位作者 Kaiwen Xia Tianyang Tong 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第2期300-310,共11页
The microwave-assisted rock fragmentation has been proven to be a promising approach in reducing cutting tools wear and improving efficiency in rock crushing and excavation.Thus,understanding the influence of damage i... The microwave-assisted rock fragmentation has been proven to be a promising approach in reducing cutting tools wear and improving efficiency in rock crushing and excavation.Thus,understanding the influence of damage induced by microwave irradiation on rock fragmentation is necessary.In this context,cylindrical Fangshan granite(FG)specimens were exposed to microwave irradiation at a power of 6 kW for different durations up to 4.5 min.The damages of the specimens induced by irradiation were quantified by using both X-ray micro-CT scanning and ultrasonic wave measurement.The CT value and Pwave velocity decreased with increase of irradiation duration.The irradiated specimens were then tested using a split Hopkinson pressure bar(SHPB)system to simulate rock fragmentation.A momentum-trap technique was utilized to ensure single-pulse loading on the specimen in SHPB tests,enabling valid fragment size distribution(FSD)analysis.The dependence of dynamic uniaxial compressive strength(UCS)on the irradiation duration and loading rate was revealed.The dynamic UCS increased with increase of loading rate while decreased with increase of irradiation duration.Using the sieve analysis,three fragmentation types were proposed based on FSD,which were dictated by both loading rate and irradiation duration.In addition,an average fragment size was proposed to quantify FSD.The results showed that the average fragment size decreased with increase of loading rate.A loading rate range was identified,where a dramatic reduction of the average fragment size occurred.The dependence of fragmentation on the irradiation duration and loading rate was also discussed. 展开更多
关键词 Microwave irradiation Split Hopkinson pressure bar(SHPB) Momentum-trap dynamic compressive strength Fragment size distribution(FSD) Fangshan granite(FG)
下载PDF
Dynamic compressive strength and failure mechanisms of microwave damaged sandstone subjected to intermediate loading rate 被引量:3
8
作者 Pin WANG Tu-bing YIN +1 位作者 Xi-bing LI Heinz KONIETZKY 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第11期3714-3730,共17页
To investigate the influence of microwave heating on the dynamic behavior and failure mechanisms of rock,dynamic compression tests were conducted on microwave-irradiated sandstone specimens using a modified split Hopk... To investigate the influence of microwave heating on the dynamic behavior and failure mechanisms of rock,dynamic compression tests were conducted on microwave-irradiated sandstone specimens using a modified split Hopkinson pressure bar(SHPB)system.Experimental results show that microwave radiation can effectively weaken the compressive strength of sandstone.Rock specimens show three different failure modes under impact load:tensile failure,tensile−shear composite failure and compressive−shear failure.The dynamic Poisson’s ratio,calculated using the measured P-and S-wave velocities,is introduced to describe the deformation characteristics of sandstone.With the increase in microwave power and heating time,the Poisson’s ratio declines first and then increases slightly,and the turning point occurs at 244.6℃.Moreover,the microstructural characteristics reveal that microwave radiation produces dehydration,pore expansion,and cracking of the rock.The damage mechanisms caused by microwave radiation are discussed based on thermal stress and steam pressure inside the rock,which provides a reasonable explanation for the experimental results. 展开更多
关键词 SANDSTONE microwave radiation thermal cracking dynamic compressive strength failure patterns split Hopkinson pressure bar
下载PDF
Failure of rock under dynamic compressive loading 被引量:4
9
作者 周子龙 李地元 +1 位作者 马国伟 李建春 《Journal of Central South University of Technology》 EI 2008年第3期339-343,共5页
Split Hopkinson Pressure Bar(SHPB) test was simulated to investigate the distribution of the first principal stress and damage zone of specimen subjected to dynamic compressive load. Numerical models of plate-type spe... Split Hopkinson Pressure Bar(SHPB) test was simulated to investigate the distribution of the first principal stress and damage zone of specimen subjected to dynamic compressive load. Numerical models of plate-type specimen containing cracks with inclined angles of 0°,45° and 90° were also established to investigate the crack propagation and damage evolution under dynamic loading. The results show that the simulation results are in accordance with the failure patterns of specimens in experimental test. The interactions between stress wave and crack with different inclined angles are different; damage usually appears around the crack tips firstly; and then more damage zones develop away from the foregoing damage zone after a period of energy accumulation; eventually,the damage zones run through the specimen in the direction of applied loading and split the specimen into pieces. 展开更多
关键词 Split Hopkinson Pressure Bar(SHPB) test failure mechanism dynamic compressive loading crack propagation damage evolution
下载PDF
Quasi-static and Dynamic Compressive Fracture Behavior of SiC_f/SiC Composites 被引量:1
10
作者 高晓菊 成来飞 +1 位作者 YAN Dongming LI Liangjun 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第3期484-488,共5页
To understand the quasi-static and dynamic compressive mechanical behavior of two- dimensional SiC fiber-reinforced SiC composites (2D-SiC1/SiC), their compressive behavior at room temperature was investigated at a ... To understand the quasi-static and dynamic compressive mechanical behavior of two- dimensional SiC fiber-reinforced SiC composites (2D-SiC1/SiC), their compressive behavior at room temperature was investigated at a strain rate from 10-4 to 104/s, and the fracture surfaces and damage morphology were observed. The results show that the dynamic failure strength of 2D-SiC1/SiC obeys the Weibull distribution, and the Weibull modulus is 5,66. Meanwhile, 2D-SiC1/SiC presents a transition from brittle to tough with a decrease of strain rate, and 2D-SiC1/SiC has a more significant strain rate sensitivity compared to the 2D-C/SiC composites. The failure mode of 2D-SiC1/SiC depends upon the strain rate. 展开更多
关键词 2D-SiC1/SiC dynamic compressive SHPB WeibuU distribution failure mode
下载PDF
Effect of Porosity and Cell Size on the Dynamic Compressive Properties of Aluminum Alloy Foams 被引量:1
11
作者 YiFENG ShishengHU 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2002年第5期395-397,共3页
The dynamic mechanical properties of open-cell aluminum alloy foams with different relative densities and cell sizes have been investigated by compressive tests. The strain rates varied from 700 s-1 to 2600 s-1. The e... The dynamic mechanical properties of open-cell aluminum alloy foams with different relative densities and cell sizes have been investigated by compressive tests. The strain rates varied from 700 s-1 to 2600 s-1. The experimental results showed that the dynamic compressive stress-strain curves exhibited a typical three-stage behavior: elastic, plateau and densification. The dynamic compressive strength of foams is affected not only by the relative density but also by the strain rate and cell size. Aluminum alloy foams with higher relative density or smaller cell size are more sensitive to the strain rate than foams with lower relative density or larger cell size. 展开更多
关键词 Aluminum alloy POROSITY dynamic compressive property Foam
下载PDF
Influence of Maximum Aggregate Size on Dynamic Size Effect of Concrete Under Low Strain Rates:Meso-scale Simulations 被引量:1
12
作者 JIN Liu YANG Wangxian +1 位作者 YU Wenxuan DU Xiuli 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2020年第1期27-39,共13页
This study is to explore the influence of maximum aggregate size(MAS)on the failure and corresponding size effect of concrete materials under low strain rates.The failure process of concrete was simulated by the mesos... This study is to explore the influence of maximum aggregate size(MAS)on the failure and corresponding size effect of concrete materials under low strain rates.The failure process of concrete was simulated by the mesoscale numerical method considering the internal heterogeneity of concrete and strain rate effect.Based on the mesoscale method,the failure behavior of concrete specimens with different structural sizes and MAS was investigated.Also,the influence of MAS on the failure modes,nominal strength and corresponding size effect of concrete were studied at the meso-scale.The simulation results indicated that MAS has an obvious influence on the failure modes of concrete subjected to axial compressive and tensile loads.The nominal tensile strength increased as the MAS increased,while the nominal compressive strength increased first and then decreased as the MAS increases under quasi-static load.In addition,it was found that the size effect on nominal strength of concrete would be weakened with the increase of strain rate.When the applied strain rate reached 1 s^-1,the size effect on nominal strength of concrete disappeard.Moreover,the MAS has an ignorable influence on the dynamic size effect of concrete under uniaxial compression and tension. 展开更多
关键词 CONCRETE maximum aggregate size size effect dynamic compression dynamic tension strain rate
下载PDF
Dynamic Compression Behavior of Ultra-high Performance Cement-based Composite with Hybrid Steel Fiber Reinforcements 被引量:1
13
作者 RONG Zhidan WANG Yali WU Shenping 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2020年第5期900-907,共8页
Ultra-high performance cement-based composites (UHPCC) is promising in construction of concrete structures that suffer impact and explosive loads.In this study,a reference UHPCC mixture with no fiber reinforcement and... Ultra-high performance cement-based composites (UHPCC) is promising in construction of concrete structures that suffer impact and explosive loads.In this study,a reference UHPCC mixture with no fiber reinforcement and four mixtures with a single type of fiber reinforcement or hybrid fiber reinforcements of straight smooth and end hook type of steel fibers were prepared.Split Hopkinson pressure bar (SHPB) was performed to investigate the dynamic compression behavior of UHPCC and X-CT test and 3D reconstruction technology were used to indicate the failure process of UHPCC under impact loading.Results show that UHPCC with 1% straight smooth fiber and 2% end hook fiber reinforcements demonstrated the best static and dynamic mechanical properties.When the hybrid steel fiber reinforcements are added in the concrete,it may need more impact energy to break the matrix and to pull out the fiber reinforcements,thus,the mixture with hybrid steel fiber reinforcements demonstrates excellent dynamic compressive performance. 展开更多
关键词 ultra-high performance cement-based composite dynamic compression behavior hybrid fiber reinforcements split Hopkinson pressure bar
下载PDF
Effects of microwave radiation on dynamic compressive properties of basalt 被引量:1
14
作者 Tu-bing YIN Fei-yan JIN +1 位作者 Qiang LI Xi-bing LI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第10期3388-3403,共16页
The dynamic mechanical properties of basalt affected by microwave were investigated by performing dynamic compressive tests using the SHPB system.Meanwhile,the thermal damage of the treated basalt was characterized by... The dynamic mechanical properties of basalt affected by microwave were investigated by performing dynamic compressive tests using the SHPB system.Meanwhile,the thermal damage of the treated basalt was characterized by ultrasonic non-destructive testing and nuclear magnetic resonance technology.The results show that with the increase of microwave power and exposure time,the P-wave velocity,dynamic compressive strength and elastic modulus decrease continuously,and the dynamic failure mode tends to be a more complex fracturing.The increase in microwave power and exposure time can enhance the temperature difference and transfer coefficient among minerals,hence intensifying the rock damage induced by thermal shock. 展开更多
关键词 microwave radiation nuclear magnetic resonance(NMR) dynamic compressive properties thermal damage
下载PDF
An RKDG finite element method for the one-dimensional inviscid compressible gas dynamics equations in a Lagrangian coordinate 被引量:2
15
作者 赵国忠 蔚喜军 张荣培 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第2期50-63,共14页
In this paper,Runge-Kutta Discontinuous Galerkin(RKDG) finite element method is presented to solve the onedimensional inviscid compressible gas dynamic equations in a Lagrangian coordinate.The equations are discreti... In this paper,Runge-Kutta Discontinuous Galerkin(RKDG) finite element method is presented to solve the onedimensional inviscid compressible gas dynamic equations in a Lagrangian coordinate.The equations are discretized by the DG method in space and the temporal discretization is accomplished by the total variation diminishing Runge-Kutta method.A limiter based on the characteristic field decomposition is applied to maintain stability and non-oscillatory property of the RKDG method.For multi-medium fluid simulation,the two cells adjacent to the interface are treated differently from other cells.At first,a linear Riemann solver is applied to calculate the numerical ?ux at the interface.Numerical examples show that there is some oscillation in the vicinity of the interface.Then a nonlinear Riemann solver based on the characteristic formulation of the equation and the discontinuity relations is adopted to calculate the numerical ?ux at the interface,which suppresses the oscillation successfully.Several single-medium and multi-medium fluid examples are given to demonstrate the reliability and efficiency of the algorithm. 展开更多
关键词 compressible gas dynamic equations RKDG finite element method Lagrangian coordinate multi- medium fluid
下载PDF
The Application of Dynamic Shock Mechanics Test in Engineering Blasting 被引量:1
16
作者 Lin Cheng Junfeng Liu 《Journal of World Architecture》 2020年第4期13-15,共3页
With the continuous advancement of China’s infrastructure construction to the west,according to the geographic situation in the southwest region,such as mountainous areas and complex terrain,the road construction pro... With the continuous advancement of China’s infrastructure construction to the west,according to the geographic situation in the southwest region,such as mountainous areas and complex terrain,the road construction process is inevitably accompanied by earth and rock blasting.To improve the quality and safety of the project,this paper addresses the problems of land and rock blasting faced in the construction of mountain road projects,taking the research of rock dynamic mechanics test as the starting point,and using a combination of theoretical analysis and experimental research methods.The specific research content includes the following parts:dynamic impact compression test(SHPB),dynamic splitting tensile test,and stress-strain curve analysis of the test results,which provides the theoretical basis and numerical parameters for the numerical simulation of future engineering blasting. 展开更多
关键词 Earth and stone blasting dynamic impact compression test(SHPB) dynamic splitting tensile test Stress-strain curve analysis
下载PDF
Dynamic Impact Compressive Behavior Investigation of Sisal Fiber-reinforced Coral Seawater Concrete
17
作者 MA Haiyan TAN Yongshan +2 位作者 YU Hongfa YUE Chengjun ZHANG Yan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第5期1034-1043,共10页
Split Hopkinson pressure bar(SHPB)was used to investigate the dynamic compressive properties of sisal fiber reinforced coral aggregate concrete(SFCAC).The results showed that,with the increase of strain rate,the dynam... Split Hopkinson pressure bar(SHPB)was used to investigate the dynamic compressive properties of sisal fiber reinforced coral aggregate concrete(SFCAC).The results showed that,with the increase of strain rate,the dynamic compressive strength,peak strain and toughness index of SFCAC are all greater than its static properties,indicating that SFCAC is a kind of rate-sensitive material.When the sisal fiber was blended,the failure mode showed obvious ductility.At high strain rates,the SFCAC without sisal fiber specimen was comminuted,and the SFCAC showed a"cracked without breaking"state.The results indicated that the sisal fiber played a significant role in reinforcing and strengthening the properties of concrete.The finite element software LS-DYNA was used to simulate two working conditions with strain rates of 78 and 101 s-1.The stressstrain curves and failure patterns obtained were in good agreement with the experimental results. 展开更多
关键词 coral aggregate concrete sisal fiber dynamic compressive strain-rate effect
下载PDF
Dynamic Uniaxial Compressive Tests on Limestone
18
作者 Ajay Kumar Jha 《Journal of Geological Resource and Engineering》 2020年第4期121-132,共12页
The dynamic properties of limestone play a pivotal role while selecting the suitable explosives for any limestone mine.Since the application of explosives creates dynamic loading and is a dynamic event,the determinati... The dynamic properties of limestone play a pivotal role while selecting the suitable explosives for any limestone mine.Since the application of explosives creates dynamic loading and is a dynamic event,the determination of dynamic modulus values is technically more appropriate than the static measurement.The rock fragmentation would significantly improve by investigating the dynamic uniaxial compressive strength as specific fracture energy,stress intensity factor,fracture toughness of any detonating blast hole depend heavily on dynamic rock property and not on static rock property.Most of the limestone projects globally are still accustomed with using static compressive strength to understand the rock fragmentation.The present papers deal with determination of dynamic uniaxial compressive property using split Hopkinson pressure bar(SHPB)system.The nano second high speed camera with laser captures the crack surface opening velocity during dynamic loading.It was observed during data analysis that dynamic compressive strength of limestone increases by 1.7-4.9 times of the static strength.It may be concluded by the study that determination of dynamic compressive strength is paramount for understanding the rock fragmentation. 展开更多
关键词 Rock fragmentation SHPB dynamic compressive strength
下载PDF
Early Treatment Outcome of Humeral Shaft Fracture Non-Union in Adults: Comparative Study of Plating versus Interlocking Nailing
19
作者 Abdullallahi Bello Galadima Lukman Olalekan Ajiboye +1 位作者 Muhammad Nuhu Salihu Isha Nurudeen 《Health》 2024年第4期371-381,共11页
Background: Fractures of humeral shaft in adults are common injuries. Humeral shafts non-union either from late presentation after initial treatment by traditional bone setters or failed non-operative orthodox care is... Background: Fractures of humeral shaft in adults are common injuries. Humeral shafts non-union either from late presentation after initial treatment by traditional bone setters or failed non-operative orthodox care is a major problem in this part of the world. This non-union is a major treatment challenge with increased cost of care and morbidity in this part of the world. Humeral shaft non-union can be treated with locked intra-medullary nailing (LIMN) or dynamic compression plating (DCP). Study on comparison of these methods of fixation in this part of the world is scarce in literature search, hence the reason for this study. Objective: The objectives of this study are: (1) to compare early clinical outcome following fixation of humeral shaft fracture nonunion with DCP versus LIMN;(2) to compare the time of radiologic fracture union of DCP with LIMN;(3) to compare complications following fixation of humeral shaft fracture nonunion with DCP versus LIMN. Patients and Methods: This was a randomized control study done for 2 years in which fifty adult patients with humeral shaft non-union were recruited. The patients were grouped into 2 (P = DCP & N = LIMN). Forty five of the patients completed the follow up periods of the study and then analyzed. The P group had ORIF with DCP while the N group had ORIF with LIMN. Both groups had grafting with cancellous bones. Each patient was followed up for a period of 6 months at the time which radiographic union is expected. Any patient without clinical and/or radiographic evidence of union after six months of surgery was diagnosed as having recurrent non-union. The data generated was analyzed using SPSS Version 23. The results were presented in charts and tables. The paired t-test was used while considering p value Result: Forty five patients completed follow up. There was a male preponderance (4:1), right humerus predominated (3:2). Motor vehicular accidents were the commonest cause of the fractures (62%). Most non-union fractures occurred at the level of the middle 3<sup>rd</sup> of the humeral shaft (60%). Failed TBS treatment was the commonest indication for the osteosynthesis (71%). More patients had plating (53%) compared to 47% who had LIMN. Most patients (93.4%) had union between 3 to 6 months irrespective of fixation type with no significant statistical difference between the union rate of DCP and LIMN (p value 0.06) with similar functional outcome and complication rates irrespective of the type of fixation. Conclusion: This study showed that the success rates in term of fracture union, outcome functional grades and complication rates were not directly dependent on the types of the fixation: plating or locked intra-medullary nailing. 展开更多
关键词 Humeral Shaft NON-UNION dynamic Compression Plating Locked Intra-Medullary Nailing Early Treatment Outcome Early Outcome
下载PDF
The modified temperature term on Johnson-Cook constitutive model of AZ31 magnesium alloy with {0002} texture 被引量:10
20
作者 Feng Zhang Zheng Liu +5 位作者 Yue Wang Pingli Mao Xinwen Kuang Zhenglai Zhang Yingdong Ju Xiaozhong Xu 《Journal of Magnesium and Alloys》 SCIE 2020年第1期172-183,共12页
The dynamic compression experiments with Split-Hopkinson Pressure Bar(SHPB)were performed on AZ31 magnesium alloy rolled sheet specimens in the normal direction(AZ31-ND)with{0002}texture at the temperature of 293-523 ... The dynamic compression experiments with Split-Hopkinson Pressure Bar(SHPB)were performed on AZ31 magnesium alloy rolled sheet specimens in the normal direction(AZ31-ND)with{0002}texture at the temperature of 293-523 K and the strain rate of 0.001-2200 s^−1.The temperature term in Johnson-Cook(JC)constitutive model had been reasonably modified.This advantage made constitutive model promising for decribing the dynamic deformation behavior of AZ31-ND with{0002}texture more accurately.The obtained true stress-true plastic strain curves agreed well with the measured results in a wide range of strain rates and temperatures.The thermal softeninging,strain and strain rate hardening effect on the AZ31-ND with{0002}texture were discussed.The adiabatic shear band(ASB)of AZ31-ND with{0002}texture hat shaped specimen was successfully predicted by combining modified JC constitutive model and numerical simulation,which was also validated by Electron Back-Scattered Diffraction(EBSD)map under the same boundary condition. 展开更多
关键词 Modified Johnson Cook constitutive model AZ31-ND with{0002}texture dynamic compression Numerical simulation Adiabatic shear band
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部