期刊文献+
共找到928篇文章
< 1 2 47 >
每页显示 20 50 100
Effect of length-width ratio of rounded rectangle aquaculture tank in dual-diagonal-inlet layout on hydrodynamics
1
作者 Meng LI Xiaozhong REN +4 位作者 Shupeng DU Wei SUN Chenxu ZHAO Hangfei LIU Xianying SHI 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第5期1695-1709,共15页
To adapt to the change of aquaculture workshop site,optimize the shape of aquaculture tanks and improve the utilization rate of breeding space,it is necessary to determine the appropriate length width ratio parameters... To adapt to the change of aquaculture workshop site,optimize the shape of aquaculture tanks and improve the utilization rate of breeding space,it is necessary to determine the appropriate length width ratio parameters of aquaculture tanks.In this paper,computational fluid dynamics(CFD)technology is adopted to study the flow field performance of aquaculture tanks with different L/B ratios(L:the length;B:the width,of aquaculture tank)and different jet direction conditions(lengthways jet and widthways jet).A three-dimensional numerical calculation model of turbulence in rounded rectangle aquaculture tanks in dual-diagonal-inlet layout was established.Jet directions are arranged lengthways and widthways,and the water flow velocity,resistance coefficient change,vorticity,etc.are analyzed under two working conditions.Results show that the flow field performance in aquaculture tank decreases with the increase of the L/B ratio.The flow field performed well when L/B was 1.0-1.3,sharply dropped at 1.4-1.6,and poor at 1.7-1.9.The results provided a theoretical basis for the design and optimization in flow field performance of the industrialized circulating aquaculture tanks. 展开更多
关键词 aquaculture tank length-width ratio computational fluid dynamic hydrodynamic
下载PDF
Thermodynamic model for deoxidation of liquid steel considering strong metal-oxygen interaction in the quasichemical model framework
2
作者 Yong-Min Cho Youn-Bae Kang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期988-1002,共15页
Herein,a thermodynamic model aimed at describing deoxidation equilibria in liquid steel was developed.The model provides explicit forms of the activity coefficient of solutes in liquid steel,eliminating the need for t... Herein,a thermodynamic model aimed at describing deoxidation equilibria in liquid steel was developed.The model provides explicit forms of the activity coefficient of solutes in liquid steel,eliminating the need for the minimization of internal Gibbs energy preliminarily when solving deoxidation equilibria.The elimination of internal Gibbs energy minimization is particularly advantageous during the coupling of deoxidation equilibrium calculations with computationally intensive approaches,such as computational fluid dynamics.The model enables efficient calculations through direct embedment of the explicit forms of activity coefficient in the computing code.The proposed thermodynamic model was developed using a quasichemical approach with two key approximations:random mixing of metallic elements(Fe and oxidizing metal) and strong nonrandom pairing of metal and oxygen as nearest neighbors.Through these approximations,the quasichemical approach yielded the activity coefficients of solutes as explicit functions of composition and temperature without requiring the minimization of internal Gibbs energy or the coupling of separate programs.The model was successfully applied in the calculation of deoxidation equilibria of various elements(Al,B,C,Ca,Ce,Cr,La,Mg,Mn,Nb,Si,Ti,V,and Zr).The limitations of the model arising from these assumptions were also discussed. 展开更多
关键词 deoxidation equilibria THERMOdynamicS quasichemical approach computational fluid dynamics
下载PDF
Computational fluid dynamics modeling of rapid pyrolysis of solid waste magnesium nitrate hydrate under different injection methods
3
作者 Wenchang Wu Kefan Yu +1 位作者 Liang Zhao Hui Dong 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期224-237,共14页
This study developed a numerical model to efficiently treat solid waste magnesium nitrate hydrate through multi-step chemical reactions.The model simulates two-phase flow,heat,and mass transfer processes in a pyrolysi... This study developed a numerical model to efficiently treat solid waste magnesium nitrate hydrate through multi-step chemical reactions.The model simulates two-phase flow,heat,and mass transfer processes in a pyrolysis furnace to improve the decomposition rate of magnesium nitrate.The performance of multi-nozzle and single-nozzle injection methods was evaluated,and the effects of primary and secondary nozzle flow ratios,velocity ratios,and secondary nozzle inclination angles on the decomposition rate were investigated.Results indicate that multi-nozzle injection has a higher conversion efficiency and decomposition rate than single-nozzle injection,with a 10.3%higher conversion rate under the design parameters.The decomposition rate is primarily dependent on the average residence time of particles,which can be increased by decreasing flow rate and velocity ratios and increasing the inclination angle of secondary nozzles.The optimal parameters are injection flow ratio of 40%,injection velocity ratio of 0.6,and secondary nozzle inclination of 30°,corresponding to a maximum decomposition rate of 99.33%. 展开更多
关键词 MULTI-NOZZLE Computational fluid dynamics Thermal decomposition reaction Pyrolysis furnace
下载PDF
Differences and Correlations of Morphological and Hemodynamic Parameters between Anterior Circulation Bifurcation and Side-wall Aneurysms
4
作者 Kai-kai GUO Chang-ya LIU +4 位作者 Gao-hui LI Jian-ping XIANG Xiao-chang LENG Yi-ke CAI Xue-bin HU 《Current Medical Science》 SCIE CAS 2024年第2期391-398,共8页
Objective:The objective of this research was to explore the difference and correlation of the morphological and hemodynamic features between sidewall and bifurcation aneurysms in anterior circulation arteries,utilizin... Objective:The objective of this research was to explore the difference and correlation of the morphological and hemodynamic features between sidewall and bifurcation aneurysms in anterior circulation arteries,utilizing computational fluid dynamics as a tool for analysis.Methods:In line with the designated inclusion criteria,this study covered 160 aneurysms identified in 131 patients who received treatment at Union Hospital of Tongji Medical College,Huazhong University of Science and Technology,China,from January 2021 to September 2022.Utilizing follow-up digital subtraction angiography(DSA)data,these cases were classified into two distinct groups:the sidewall aneurysm group and the bifurcation aneurysm group.Morphological and hemodynamic parameters in the immediate preoperative period were meticulously calculated and examined in both groups using a three-dimensional DSA reconstruction model.Results:No significant differences were found in the morphological or hemodynamic parameters of bifurcation aneurysms at varied locations within the anterior circulation.However,pronounced differences were identified between sidewall and bifurcation aneurysms in terms of morphological parameters such as the diameter of the parent vessel(Dvessel),inflow angle(θF),and size ratio(SR),as well as the hemodynamic parameter of inflow concentration index(ICI)(P<0.001).Notably,only the SR exhibited a significant correlation with multiple hemodynamic parameters(P<0.001),while the ICI was closely related to several morphological parameters(R>0.5,P<0.001).Conclusions:The significant differences in certain morphological and hemodynamic parameters between sidewall and bifurcation aneurysms emphasize the importance to contemplate variances in threshold values for these parameters when evaluating the risk of rupture in anterior circulation aneurysms.Whether it is a bifurcation or sidewall aneurysm,these disparities should be considered.The morphological parameter SR has the potential to be a valuable clinical tool for promptly distinguishing the distinct rupture risks associated with sidewall and bifurcation aneurysms. 展开更多
关键词 SIDEWALL BIFURCATION unruptured aneurysms computational fluid dynamics
下载PDF
Flow Field Characteristics of Multi-Trophic Artificial Reef Based on Computation Fluid Dynamics
5
作者 HUANG Junlin LI Jiao +3 位作者 LI Yan GONG Pihai GUAN Changtao XIA Xu 《Journal of Ocean University of China》 CAS CSCD 2024年第2期317-327,共11页
On the basis of computational fluid dynamics,the flow field characteristics of multi-trophic artificial reefs,including the flow field distribution features of a single reef under three different velocities and the ef... On the basis of computational fluid dynamics,the flow field characteristics of multi-trophic artificial reefs,including the flow field distribution features of a single reef under three different velocities and the effect of spacing between reefs on flow scale and the flow state,were analyzed.Results indicate upwelling,slow flow,and eddy around a single reef.Maximum velocity,height,and volume of upwelling in front of a single reef were positively correlated with inflow velocity.The length and volume of slow flow increased with the increase in inflow velocity.Eddies were present both inside and backward,and vorticity was positively correlated with inflow velocity.Space between reefs had a minor influence on the maximum velocity and height of upwelling.With the increase in space from 0.5 L to 1.5 L(L is the reef lehgth),the length of slow flow in the front and back of the combined reefs increased slightly.When the space was 2.0 L,the length of the slow flow decreased.In four different spaces,eddies were present inside and at the back of each reef.The maximum vorticity was negatively correlated with space from 0.5 L to 1.5 L,but under 2.0 L space,the maximum vorticity was close to the vorticity of a single reef under the same inflow velocity. 展开更多
关键词 artificial reef flow field characteristics computation fluid dynamics multi-trophic structure
下载PDF
Computational Fluid Dynamics Approach for Predicting Pipeline Response to Various Blast Scenarios: A Numerical Modeling Study
6
作者 Farman Saifi Mohd Javaid +1 位作者 Abid Haleem S.M.Anas 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第9期2747-2777,共31页
Recent industrial explosions globally have intensified the focus in mechanical engineering on designing infras-tructure systems and networks capable of withstanding blast loading.Initially centered on high-profile fac... Recent industrial explosions globally have intensified the focus in mechanical engineering on designing infras-tructure systems and networks capable of withstanding blast loading.Initially centered on high-profile facilities such as embassies and petrochemical plants,this concern now extends to a wider array of infrastructures and facilities.Engineers and scholars increasingly prioritize structural safety against explosions,particularly to prevent disproportionate collapse and damage to nearby structures.Urbanization has further amplified the reliance on oil and gas pipelines,making them vital for urban life and prime targets for terrorist activities.Consequently,there is a growing imperative for computational engineering solutions to tackle blast loading on pipelines and mitigate associated risks to avert disasters.In this study,an empty pipe model was successfully validated under contact blast conditions using Abaqus software,a powerful tool in mechanical engineering for simulating blast effects on buried pipelines.Employing a Eulerian-Lagrangian computational fluid dynamics approach,the investigation extended to above-surface and below-surface blasts at standoff distances of 25 and 50 mm.Material descriptions in the numerical model relied on Abaqus’default mechanical models.Comparative analysis revealed varying pipe performance,with deformation decreasing as explosion-to-pipe distance increased.The explosion’s location relative to the pipe surface notably influenced deformation levels,a key finding highlighted in the study.Moreover,quantitative findings indicated varying ratios of plastic dissipation energy(PDE)for different blast scenarios compared to the contact blast(P0).Specifically,P1(25 mm subsurface blast)and P2(50 mm subsurface blast)showed approximately 24.07%and 14.77%of P0’s PDE,respectively,while P3(25 mm above-surface blast)and P4(50 mm above-surface blast)exhibited lower PDE values,accounting for about 18.08%and 9.67%of P0’s PDE,respectively.Utilising energy-absorbing materials such as thin coatings of ultra-high-strength concrete,metallic foams,carbon fiber-reinforced polymer wraps,and others on the pipeline to effectively mitigate blast damage is recommended.This research contributes to the advancement of mechanical engineering by providing insights and solutions crucial for enhancing the resilience and safety of underground pipelines in the face of blast events. 展开更多
关键词 Blast loading computational fluid dynamics computer modeling pipe networks response prediction structural safety
下载PDF
Modelling dynamic pantograph loads with combined numerical analysis
7
作者 F.F.Jackson R.Mishra +6 位作者 J.M.Rebelo J.Santos P.Antunes J.Pombo H.Magalhaes L.Wills M.Askill 《Railway Engineering Science》 EI 2024年第1期81-94,共14页
Appropriate interaction between pantograph and catenary is imperative for smooth operation of electric trains.Changing heights of overhead lines to accommodate level crossings,overbridges,and tunnels pose significant ... Appropriate interaction between pantograph and catenary is imperative for smooth operation of electric trains.Changing heights of overhead lines to accommodate level crossings,overbridges,and tunnels pose significant challenges in maintaining consistent current collection performance as the pantograph aerodynamic profile,and thus aerodynamic load changes significantly with operational height.This research aims to analyse the global flow characteristics and aerodynamic forces acting on individual components of an HSX pantograph operating in different configurations and orientations,such that the results can be combined with multibody simulations to obtain accurate dynamic insight into contact forces.Specifically,computational fluid dynamics simulations are used to investigate the pantograph component loads in a representative setting,such as that of the recessed cavity on a Class 800 train.From an aerodynamic perspective,this study indicates that the total drag force acting on non-fixed components of the pantograph is larger for the knuckle-leading orientation rather than the knuckle-trailing,although the difference between the two is found to reduce with increasing pantograph extension.Combining the aerodynamic loads acting on individual components with multibody tools allows for realistic dynamic insight into the pantograph behaviour.The results obtained show how considering aerodynamic forces enhance the realism of the models,leading to behaviour of the pantograph-catenary contact forces closely matching that seen in experimental tests. 展开更多
关键词 Pantograph-catenary interaction Pantograph aerodynamics Computational fluid dynamics Pantograph loads Current collection performance
下载PDF
Numerical Study on the Aerodynamic and Fluid−Structure Interaction of An NREL-5MW Wind Turbine
8
作者 ZHAO Mi YU Wan-li +2 位作者 WANG Pi-guang QU Yang DU Xiu-li 《China Ocean Engineering》 SCIE EI CSCD 2024年第3期363-378,共16页
A 5-MW wind turbine has been modeled and analyzed for fluid-structure interaction and aerodynamic performance.In this study, a full-scale model of a 5-MW wind turbine is first developed based on a computational fluid ... A 5-MW wind turbine has been modeled and analyzed for fluid-structure interaction and aerodynamic performance.In this study, a full-scale model of a 5-MW wind turbine is first developed based on a computational fluid dynamics(CFD) approach, in which the unsteady, noncompressible Reynolds Averaged Navier-Stokes(RANS) method is used. The main focus of the study is to analyze the tower shadow effect on the aerodynamic performance of the wind turbine under different inlet flow conditions. Subsequently, the finite element model is established by considering fluid/structure interactions to study the structural stress, displacement, strain distributions and flow field information of the structure under the uniform wind speed. Finally, the fluid-structure interaction model is established by considering turbulent wind and the tower shadow effect. The variation rules of the dynamic response of the one-way and two-way fluid-structure interaction(FSI) models under different wind speeds are analyzed, and the numerical calculation results are compared with those of the centralized mass model. The results show that the tower shadow effect and structural deformation are the main factors affecting the aerodynamic load fluctuation of the wind turbine, which in turn affects the aerodynamic performance and structural stability of the blades. The structural dynamic response of the coupled model shows significant similarity, while the structural displacement response of the former exhibits less fluctuation compared with the conventional centralized mass model. The one-way fluid-structure interaction(FSI)model shows a higher frequency of stress-strain and displacement oscillations on the blade compared with the two-way FSI model. 展开更多
关键词 computational fluid dynamics methods(CFD) tower shadow effect aerodynamic performance fluidstructure interaction space flow field
下载PDF
An adaptive machine learning-based optimization method in the aerodynamic analysis of a finite wing under various cruise conditions
9
作者 Zilan Zhang Yu Ao +1 位作者 Shaofan Li Grace X.Gu 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2024年第1期27-34,共8页
Conventional wing aerodynamic optimization processes can be time-consuming and imprecise due to the complexity of versatile flight missions.Plenty of existing literature has considered two-dimensional infinite airfoil... Conventional wing aerodynamic optimization processes can be time-consuming and imprecise due to the complexity of versatile flight missions.Plenty of existing literature has considered two-dimensional infinite airfoil optimization,while three-dimensional finite wing optimizations are subject to limited study because of high computational costs.Here we create an adaptive optimization methodology built upon digitized wing shape deformation and deep learning algorithms,which enable the rapid formulation of finite wing designs for specific aerodynamic performance demands under different cruise conditions.This methodology unfolds in three stages:radial basis function interpolated wing generation,collection of inputs from computational fluid dynamics simulations,and deep neural network that constructs the surrogate model for the optimal wing configuration.It has been demonstrated that the proposed methodology can significantly reduce the computational cost of numerical simulations.It also has the potential to optimize various aerial vehicles undergoing different mission environments,loading conditions,and safety requirements. 展开更多
关键词 Aerodynamic optimization Computational fluid dynamics Radial basis function Finite wing Deep learning neural network
下载PDF
The Effect of Lateral Offset Distance on the Aerodynamics and Fuel Economy of Vehicle Queues
10
作者 Lili Lei Ze Li +2 位作者 Haichao Zhou Jing Wang Wei Lin 《Fluid Dynamics & Materials Processing》 EI 2024年第1期147-163,共17页
The vehicle industry is always in search of breakthrough energy-saving and emission-reduction technologies.In recent years,vehicle intelligence has progressed considerably,and researchers are currently trying to take ... The vehicle industry is always in search of breakthrough energy-saving and emission-reduction technologies.In recent years,vehicle intelligence has progressed considerably,and researchers are currently trying to take advantage of these developments.Here we consider the case of many vehicles forming a queue,i.e.,vehicles traveling at a predetermined speed and distance apart.While the majority of existing studies on this subject have focused on the influence of the longitudinal vehicle spacing,vehicle speed,and the number of vehicles on aerodynamic drag and fuel economy,this study considers the lateral offset distance of the vehicle queue.The group fuel consumption savings rate is calculated and analyzed.As also demonstrated by experimental results,some aerodynamic benefits exist.Moreover,the fuel consumption saving rate of the vehicle queue decreases as the lateral offset distance increases. 展开更多
关键词 Vehicle platoon automotive aerodynamics horizontal offset distance fuel consumption savings rate computational fluid dynamics
下载PDF
Experimental and Numerical Investigation on the Aerodynamic Characteristics of High-Speed Pantographs with Supporting Beam Wind Deflectors
11
作者 Shiyang Song Tongxin Han 《Fluid Dynamics & Materials Processing》 EI 2024年第1期127-145,共19页
Aiming to mitigate the aerodynamic lift force imbalance between pantograph strips,which exacerbates wear and affects the current collection performance of the pantograph-catenary system,a study has been conducted to s... Aiming to mitigate the aerodynamic lift force imbalance between pantograph strips,which exacerbates wear and affects the current collection performance of the pantograph-catenary system,a study has been conducted to support the beam deflector optimization using a combination of experimental measurements and computational fluid dynamics(CFD)simulations.The results demonstrate that the size,position,and installation orientation of the wind deflectors significantly influence the amount of force compensation.They also indicate that the front strip deflectors should be installed downwards and the rear strip deflectors upwards,thereby forming a“π”shape.Moreover,the lift force compensation provided by the wind deflectors increases with the size of the deflector.Alternative wind compensation strategies,such as control circuits,are also discussed,putting emphasis on the pros and cons of various pantograph types and wind compensation approaches. 展开更多
关键词 High-speed pantograph aerodynamic lift force supporting beam wind deflectors computational fluid dynamics(CFD)
下载PDF
Comprehensive Examination of Solar Panel Design: A Focus on Thermal Dynamics
12
作者 Kajal Sheth Dhvanil Patel 《Smart Grid and Renewable Energy》 2024年第1期15-33,共19页
In the 21st century, the deployment of ground-based Solar Photovoltaic (PV) Modules has seen exponential growth, driven by increasing demands for green, clean, and renewable energy sources. However, their usage is con... In the 21st century, the deployment of ground-based Solar Photovoltaic (PV) Modules has seen exponential growth, driven by increasing demands for green, clean, and renewable energy sources. However, their usage is constrained by certain limitations. Notably, the efficiency of solar PV modules on the ground peaks at a maximum of 25%, and there are concerns regarding their long-term reliability, with an expected lifespan of approximately 25 years without failures. This study focuses on analyzing the thermal efficiency of PV Modules. We have investigated the temperature profile of PV Modules under varying environmental conditions, such as air velocity and ambient temperature, utilizing Computational Fluid Dynamics (CFD). This analysis is crucial as the efficiency of PV Modules is significantly impacted by changes in the temperature differential relative to the environment. Furthermore, the study highlights the effect of airflow over solar panels on their temperature. It is found that a decrease in the temperature of the PV Module increases Open Circuit Voltage, underlining the importance of thermal management in optimizing solar panel performance. 展开更多
关键词 Solar Photovoltaic (PV) Modules Thermal Efficiency Analysis Open Circuit Voltage Computational Fluid dynamics (CFD) Solar Panel Temperature Profile
下载PDF
Multiway Dynamic Trust Chain Model on Virtual Machine for Cloud Computing 被引量:1
13
作者 Jie Zhu Guoyuan Lin +2 位作者 Fucheng You Huaqun Liu Chunru Zhou 《China Communications》 SCIE CSCD 2016年第7期83-91,共9页
This paper sums up four security factors after analyzing co-residency threats caused by the special multitenant environment in the cloud.To secure the factors,a multiway dynamic trust chain transfer model was proposed... This paper sums up four security factors after analyzing co-residency threats caused by the special multitenant environment in the cloud.To secure the factors,a multiway dynamic trust chain transfer model was proposed on the basis of a measurement interactive virtual machine and current behavior to protect the integrity of the system.A trust chain construction module is designed in a virtual machine monitor.Through dynamic monitoring,it achieves the purpose of transferring integrity between virtual machine.A cloud system with a trust authentication function is implemented on the basis of the model,and its practicability is shown. 展开更多
关键词 cloud computing virtual machine trustworthiness measurement dynamic trust transfer
下载PDF
CFD simulation of hydrodynamics and mixing performance in dual shaft eccentric mixers 被引量:2
14
作者 Songsong Wang Xia Xiong +5 位作者 Peiqiao Liu Qiongzhi Zhang Qian Zhang Changyuan Tao Yundong Wang Zuohua Liu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第10期297-309,共13页
This work aims to systematically study hydrodynamics and mixing characteristics of non-Newtonian fluid(carboxyl methyl cellulose,CMC)in dual shaft eccentric mixer.Fluid rheology was described by the power law rheologi... This work aims to systematically study hydrodynamics and mixing characteristics of non-Newtonian fluid(carboxyl methyl cellulose,CMC)in dual shaft eccentric mixer.Fluid rheology was described by the power law rheological model.Computational fluid dynamics was employed to simulate the velocity field and shear rate inside the stirred tank.The influence mechanism of the rotational modes,height difference between impellers,impeller eccentricities,and impeller types on the flow field have been well investigated.We studied the performance of different dual-shaft eccentric mixers at the constant power input with its fluid velocity profiles,average shear strain rate,mixing time and mixing energy.The counter-rotation mode shows better mixing performance than co-rotation mode,and greater eccentricity can shorten mixing time on the basis of same stirred condition.To intensify the hydrodynamic interaction between impellers and enhance the overall mixing performance of the dual shaft eccentric mixers,it is critical to have a reasonable combination of impellers and an appropriate spatial position of impellers. 展开更多
关键词 Dual shaft eccentric mixers Non-Newtonian fluid Mixing Laminar flow Computational fluid dynamics
下载PDF
Different efficiency toward the biomimetic aerobic oxidation of benzyl alcohol in microchannel and bubble column reactors: Hydrodynamic characteristics and gas–liquid mass transfer 被引量:2
15
作者 Qi Han Xin-Yuan Zhang +2 位作者 Hai-Bo Wu Xian-Tai Zhou Hong-Bing Ji 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第3期84-92,共9页
The selective aerobic oxidation of benzyl alcohol to benzaldehyde has attracted considerable attention because benzaldehyde is a high value-added product. The rate of this typical gas–liquid reaction is significantly... The selective aerobic oxidation of benzyl alcohol to benzaldehyde has attracted considerable attention because benzaldehyde is a high value-added product. The rate of this typical gas–liquid reaction is significantly affected by mass transfer. In this study, CoTPP-mediated(CoTPP: cobalt(II) mesotetraphenylporphyrin) selective benzyl alcohol oxidation with oxygen was conducted in a membrane microchannel(MMC) reactor and a bubble column(BC) reactor, respectively. We observed that 83% benzyl alcohol was converted within 6.5 min in the MMC reactor, but only less than 10% benzyl alcohol was converted in the BC reactor. Hydrodynamic characteristics and gas–liquid mass transfer performances were compared for the MMC and BC reactors. The MMC reactor was assumed to be a plug flow reactor,and the dimensionless variance was 0.29. Compared to the BC reactor, the gas–liquid mass transfer was intensified significantly in MMC reactor. It could be ascribed to the high gas holdup(2.9 times higher than that of BC reactor), liquid film mass transfer coefficient(8.2 times higher than that of BC reactor), and mass transfer coefficient per unit interfacial area(3.8 times higher than that of BC reactor). Moreover,the Hatta number for the MMC reactor reached up to 0.61, which was about 15 times higher than that of the BC reactor. The computational fluid dynamics calculations for mass fractions in both liquid and gas phases were consistent with the experimental data. 展开更多
关键词 Membrane microchannel reactor Gas-liquid flow Mass transfer Benzyl alcohol Computational fluid dynamics(CFD) Bubble column reactor
下载PDF
Computational fluid dynamics-discrete element method simulation of stirred tank reactor for graphene production 被引量:1
16
作者 Shuaishuai Zhou Jing Li +5 位作者 Kaixiang Pang Chunxi Lu Feng Zhu Congzhen Qiao Yajie Tian Jingwei Zhang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第12期196-207,共12页
Liquid phase exfoliation(LPE)process for graphene production is usually carried out in stirred tank reactor and the interactions between the solvent and the graphite particles are important as to improve the productio... Liquid phase exfoliation(LPE)process for graphene production is usually carried out in stirred tank reactor and the interactions between the solvent and the graphite particles are important as to improve the production efficiency.In this paper,these interactions were revealed by computational fluid dynamics–discrete element method(CFD-DEM)method.Based on simulation results,both liquid phase flow hydrodynamics and particle motion behavior have been analyzed,which gave the general information of the multiphase flow behavior inside the stirred tank reactor as to graphene production.By calculating the threshold at the beginning of graphite exfoliation process,the shear force from the slip velocity was determined as the active force.These results can support the optimization of the graphene production process. 展开更多
关键词 Computational fluid dynamics Discrete element method Stirred tank LPE process Liquid-particle interactions
下载PDF
Application of computational fluid dynamics in design of viscous dampers-CFD modeling and full-scale dynamic testing 被引量:1
17
作者 Hassan Lak Seyed Mehdi Zahrai +1 位作者 Seyed Mohammad Mirhosseini Ehsanollah Zeighami 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2023年第4期1065-1080,共16页
Computational fluid dynamics(CFD)provides a powerful tool for investigating complicated fluid flows.This paper aims to study the applicability of CFD in the preliminary design of linear and nonlinear fluid viscous dam... Computational fluid dynamics(CFD)provides a powerful tool for investigating complicated fluid flows.This paper aims to study the applicability of CFD in the preliminary design of linear and nonlinear fluid viscous dampers.Two fluid viscous dampers were designed based on CFD models.The first device was a linear viscous damper with straight orifices.The second was a nonlinear viscous damper containing a one-way pressure-responsive valve inside its orifices.Both dampers were detailed based on CFD simulations,and their internal fluid flows were investigated.Full-scale specimens of both dampers were manufactured and tested under dynamic loads.According to the tests results,both dampers demonstrate stable cyclic behaviors,and as expected,the nonlinear damper generally tends to dissipate more energy compared to its linear counterpart.Good compatibility was achieved between the experimentally measured damper force-velocity curves and those estimated from CFD analyses.Using a thermography camera,a rise in temperature of the dampers was measured during the tests.It was found that output force of the manufactured devices was virtually independent of temperature even during long duration loadings.Accordingly,temperature dependence can be ignored in CFD models,because a reliable temperature compensator mechanism was used(or intended to be used)by the damper manufacturer. 展开更多
关键词 fluid viscous damper passive control dynamic testing energy dissipation device computational fluid dynamic THERMOGRAPHY
下载PDF
Dividing the transit wind speeds into intervals as a favorable methodology for analyzing the relationship between wind speed and the aerodynamic impedance of vegetation in semiarid grasslands 被引量:1
18
作者 LI Ruishen PEI Haifeng +4 位作者 ZHANG Shengwei LI Fengming LIN Xi WANG Shuai YANG Lin 《Journal of Arid Land》 SCIE CSCD 2023年第8期887-900,共14页
In grassland ecosystems,the aerodynamic roughness(Z0)and frictional wind speed(u*)contribute to the aerodynamic impedance of the grassland canopy.Thus,they are often used in the studies of wind erosion and evapotransp... In grassland ecosystems,the aerodynamic roughness(Z0)and frictional wind speed(u*)contribute to the aerodynamic impedance of the grassland canopy.Thus,they are often used in the studies of wind erosion and evapotranspiration.However,the effect of wind speed and grazing measures on the aerodynamic impedance of the grassland canopy has received less analysis.In this study,we monitored wind speeds at multiple heights in grazed and grazing-prohibited grasslands for 1 month in 2021,determined the transit wind speed at 2.0 m height by comparing wind speed differences at the same height in both grasslands,and divided these transit wind speeds at intervals of 2.0 m/s to analyze the effect of the transit wind speed on the relationship among Z0,u*,and wind speed within the grassland canopy.The results showed that dividing the transit wind speeds into intervals has a positive effect on the logarithmic fit of the wind speed profile.After dividing the transit wind speeds into intervals,the wind speed at 0.1 m height(V0.1)gradually decreased with the increase of Z0,exhibiting three distinct stages:a sharp change zone,a steady change zone,and a flat zone;while the overall trend of u*increased first and then decreased with the increase of V0.1.Dividing the transit wind speeds into intervals improved the fitting relationship between Z0 and V0.1 and changed their fitting functions in grazed and grazing-prohibited grasslands.According to the computational fluid dynamic results,we found that the number of tall-stature plants has a more significant effect on windproof capacity than their height.The results of this study contribute to a better understanding of the relationship between wind speed and the aerodynamic impedance of vegetation in grassland environments. 展开更多
关键词 transit wind speeds frictional wind speed aerodynamic roughness computational fluid dynamic(CFD) grazed grassland grazing-prohibited grassland
下载PDF
AN IMPROVED MODEL FOR COMPUTING SOLUTION DYNAMICS OF NATURAL PRODUCTS WITH ^(13)C NUCLEAR MAGNETIC RELAXATION
19
作者 Yan Wu YANG Ang JI Bing Lin HE Institute of Polymer Chemistry,Nankai University,Tianjin 300071Xin YAN Xiao Long XU De Hun WANG Bao Gong QIAN Wuhan Institute of Physics,The Chinese Academy of Sciences,Wuhan 430071 《Chinese Chemical Letters》 SCIE CAS CSCD 1993年第10期903-906,共4页
The fully anisotropic molecular overall tumbling model with methyl conformation jumps internal rotation among three equivalent sites is proposed,the overall tumbling rotation rates and the methyl internal rotation rat... The fully anisotropic molecular overall tumbling model with methyl conformation jumps internal rotation among three equivalent sites is proposed,the overall tumbling rotation rates and the methyl internal rotation rates of ponicidin are computed with this model from ~C relaxation parameters. 展开更多
关键词 exp RI C NUCLEAR MAGNETIC RELAXATION AN IMPROVED MODEL FOR computing SOLUTION dynamicS OF NATURAL PRODUCTS WITH
下载PDF
A simplified approach to modelling blasts in computational fluid dynamics (CFD)
20
作者 D.Mohotti K.Wijesooriya S.Weckert 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第5期19-34,共16页
This paper presents a time-efficient numerical approach to modelling high explosive(HE)blastwave propagation using Computational Fluid Dynamics(CFD).One of the main issues of using conventional CFD modelling in high e... This paper presents a time-efficient numerical approach to modelling high explosive(HE)blastwave propagation using Computational Fluid Dynamics(CFD).One of the main issues of using conventional CFD modelling in high explosive simulations is the ability to accurately define the initial blastwave properties that arise from the ignition and consequent explosion.Specialised codes often employ Jones-Wilkins-Lee(JWL)or similar equation of state(EOS)to simulate blasts.However,most available CFD codes are limited in terms of EOS modelling.They are restrictive to the Ideal Gas Law(IGL)for compressible flows,which is generally unsuitable for blast simulations.To this end,this paper presents a numerical approach to simulate blastwave propagation for any generic CFD code using the IGL EOS.A new method known as the Input Cavity Method(ICM)is defined where input conditions of the high explosives are given in the form of pressure,velocity and temperature time-history curves.These time history curves are input at a certain distance from the centre of the charge.It is shown that the ICM numerical method can accurately predict over-pressure and impulse time history at measured locations for the incident,reflective and complex multiple reflection scenarios with high numerical accuracy compared to experimental measurements.The ICM is compared to the Pressure Bubble Method(PBM),a common approach to replicating initial conditions for a high explosive in Finite Volume modelling.It is shown that the ICM outperforms the PBM on multiple fronts,such as peak values and overall overpressure curve shape.Finally,the paper also presents the importance of choosing an appropriate solver between the Pressure Based Solver(PBS)and Density-Based Solver(DBS)and provides the advantages and disadvantages of either choice.In general,it is shown that the PBS can resolve and capture the interactions of blastwaves to a higher degree of resolution than the DBS.This is achieved at a much higher computational cost,showing that the DBS is much preferred for quick turnarounds. 展开更多
关键词 Blast loads Computational fluid dynamics Explosions Numerical simulations
下载PDF
上一页 1 2 47 下一页 到第
使用帮助 返回顶部