Using the operational model(B model)of Beijing Meteorological Center,we do some of numerical experi- ments of crossing and rounding mountains in all velocity adjustment scheme,and study dynamic effect of Qinghai-Xizan...Using the operational model(B model)of Beijing Meteorological Center,we do some of numerical experi- ments of crossing and rounding mountains in all velocity adjustment scheme,and study dynamic effect of Qinghai-Xizang Plateau and Rocky Mountains on lee cyclones.The results show that due to air flow round the Qinghai-Xizang Plateau,divergence is distributed in the shape of confluence which matches cyclogenesis area and cyclonic track in East Asia.In the downstream of the Qinghai-Xizang Plateau,convergence in the upper troposphere restrains cyclone development in the east of China mainland.In North America, air flow primarily crosses over Rocky Mountains.Air is adiabatically cooled when it flows upward in the west flank of Rocky Mountains,while air is warmed when it flows downward in the lee side.The fact is important for the lee cyclogenesis and the lee frontogenesis of Rocky Mountains.Air flow crossing over Rocky Mountains is also the main cause for forming dryline in the mid-west of United States.展开更多
This paper presents a numerical simulation of the flow inside a cyclone separator at high particle loads. The gas and gas–particle flows were analyzed using a commercial computational fluid dynamics code. The turbule...This paper presents a numerical simulation of the flow inside a cyclone separator at high particle loads. The gas and gas–particle flows were analyzed using a commercial computational fluid dynamics code. The turbulence effects inside the separator were modeled using the Reynolds stress model. The two phase gas–solid particles flow was modeled using a hybrid Euler–Lagrange approach, which accounts for the four-way coupling between phases. The simulations were performed for three inlet velocities of the gaseous phase and several cyclone mass particle loadings. Moreover, the influences of several submodel parameters on the calculated results were investigated. The obtained results were compared against experimental data collected at the in-house experimental rig. The cyclone pressure drop evaluated numerically underpredicts the measured values. The possible reason of this discrepancies was disused.展开更多
文摘Using the operational model(B model)of Beijing Meteorological Center,we do some of numerical experi- ments of crossing and rounding mountains in all velocity adjustment scheme,and study dynamic effect of Qinghai-Xizang Plateau and Rocky Mountains on lee cyclones.The results show that due to air flow round the Qinghai-Xizang Plateau,divergence is distributed in the shape of confluence which matches cyclogenesis area and cyclonic track in East Asia.In the downstream of the Qinghai-Xizang Plateau,convergence in the upper troposphere restrains cyclone development in the east of China mainland.In North America, air flow primarily crosses over Rocky Mountains.Air is adiabatically cooled when it flows upward in the west flank of Rocky Mountains,while air is warmed when it flows downward in the lee side.The fact is important for the lee cyclogenesis and the lee frontogenesis of Rocky Mountains.Air flow crossing over Rocky Mountains is also the main cause for forming dryline in the mid-west of United States.
文摘This paper presents a numerical simulation of the flow inside a cyclone separator at high particle loads. The gas and gas–particle flows were analyzed using a commercial computational fluid dynamics code. The turbulence effects inside the separator were modeled using the Reynolds stress model. The two phase gas–solid particles flow was modeled using a hybrid Euler–Lagrange approach, which accounts for the four-way coupling between phases. The simulations were performed for three inlet velocities of the gaseous phase and several cyclone mass particle loadings. Moreover, the influences of several submodel parameters on the calculated results were investigated. The obtained results were compared against experimental data collected at the in-house experimental rig. The cyclone pressure drop evaluated numerically underpredicts the measured values. The possible reason of this discrepancies was disused.