期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Mechanical Analysis and Numerical Simulation for New Type of Dynamic Control Devices
1
作者 CHEN Suhua LI Ruiqi +2 位作者 FEI Liang YU Zhiguang DING Jianming 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2022年第6期735-749,共15页
The conventional dynamic control devices,such as fluid viscous damper(VFD)and isolating bearings,are unsuitable for the double-deck cable-stayed bridge due to a lack of sustainability,so it is necessary to introduce s... The conventional dynamic control devices,such as fluid viscous damper(VFD)and isolating bearings,are unsuitable for the double-deck cable-stayed bridge due to a lack of sustainability,so it is necessary to introduce some high-tech dynamic control devices to reduce dynamic response for double-deck cable-stayed bridges under earthquakes.A(90+128)m-span double-deck cable-stayed bridge with a steel truss beam is taken as the prototype bridge.A 3D finite element model is built to conduct the nonlinear time-history analysis of different site categories in fortification intensityⅨ(0.40 g)degree area.Two new types of dynamic control devices-cable sliding friction aseismic bearings(CSFABs)and elasticity fluid viscous dampers composite devices(EVFDs)are introduced to reduce the dynamic responses of double-deck cable-stayed bridges with steel truss beam.The parametric optimization design for the damping coefficient C and the elastic stiffness of spring K of EVFDs is conducted.The following conclusions are drawn:(1)The hybrid support system by EVFDs and CSFABs play a good function under both seismic and regular work,especially in eliminating the expansion joints damage;(2)The hybrid support system can reduce the beam-end displacement by 75%and the tower-bottom bending moment by 60%under the longitudinal seismic excitation.In addition,it can reduce the pier-bottom bending moment by at least 45%under transverse seismic and control the relative displacement between the pier and beam within 0.3 m.(3)Assuming the velocity indexα=0.3,the parametric optimization suggests the damping coefficient C as 2000 kN·s·m-1in siteⅠ0,4000kN·s·m-1in siteⅡ,6000 kN·s·m-1in siteⅣ,and the elastic stiffness of spring K as 10000 kN/m in siteⅠ0,50000 kN/m in siteⅡ,and 100000 kN/m in siteⅣ. 展开更多
关键词 dynamic control device double-deck cable-stayed bridge with steel truss beam cable-sliding friction aseismic bearings(CSFABs) elasticity fluid viscous dampers composite devices(EVFDs)
下载PDF
A model test system with a dynamic load device for geotechnical engineering in cold regions
2
作者 ShuPing Zhao Wei Ma +1 位作者 GuiDe Jiao Fei Luo 《Research in Cold and Arid Regions》 2012年第2期115-120,共6页
A model test system with a dynamic load device for geotechnical engineering in cold regions is presented. This system consists of a model test tank, a refrigeration device and temperature controller, a dynamic load de... A model test system with a dynamic load device for geotechnical engineering in cold regions is presented. This system consists of a model test tank, a refrigeration device and temperature controller, a dynamic load device, together with sensors and data loggers for detecting stress, deformation, and temperature changes. The system can accommodate soil blocks up to 3 m in length, 2.5 m in width, and 1 m in height. The lowest temperature provided by the refrigeration device is -20 ℃. The maximum load provided by the dynamic load device is 100 kN and the vibration fi'equency of the dynamic load can range from 0.1 to 10 Hz. A number of waveforms, such as sine waves, rectangular waves, triangle waves, and other user-defined waves can be generated by the dynamic load device controller. 展开更多
关键词 model test system dynamic load device STRESS DEFORMATION temperature change
下载PDF
Dynamic experiments on flocculation and sedimentation of argillized ultrafine tailings using fly-ash-based magnetic coagulant 被引量:11
3
作者 李帅 王新民 张钦礼 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第7期1975-1984,共10页
In order to accelerate the sedimentation of super-large-scale argillized ultrafine tailings with bad features such as low settling velocity, muddy overflow water, and large flocculant dosage, a fly-ash-based magnetic ... In order to accelerate the sedimentation of super-large-scale argillized ultrafine tailings with bad features such as low settling velocity, muddy overflow water, and large flocculant dosage, a fly-ash-based magnetic coagulant (FAMC) was used in a dynamic experimental device. To obtain the best possible combination of the impact factors (magnetic intensity, FAMC dosage, flocculant dosage, and feed speed) for minimum overflow turbidity, a response surface methodology test coupled with a four-factor five-level central composite design was conducted. The synergy mechanism of FAMC and flocculant was analyzed based on the potential measurement and scanning electron microscopy. The results show that the flocculant dosage, overflow turbidity, and solid content can be reduced by 50%, 90%, and 80%, while the handling capacity per unit and efficiency of backfill and dry stacking can be promoted by 20%, 17%, and 13%, respectively, with a magnetic intensity of 0.3 T, FAMC dosage of 200 mL/t, flocculant dosage of 30 g/t, and feed speed of 0.6 t/(m^2·h). Therefore, synergy of FAMC and flocculant has obvious efficiency in saving energy and protecting the environment by allowing 70×10^6 t/a of argillized ultrafine tailings slurry to be disposed safely and efficiently with a cost saving of more than 53×106 Yuan/a, which gives it great promise for use in domestic and foreign mines. 展开更多
关键词 super-large-scale argillized ultrafine tailings flocculation and sedimentation fly-ash-based magnetic coagulant dynamic experimental device response surface methodology synergy mechanism
下载PDF
Analysis of Hysteretic Strongly Nonlinearity for Quad Iced Bundle Conductors 被引量:3
4
作者 刘富豪 张琪昌 王炜 《Chinese Physics Letters》 SCIE CAS CSCD 2010年第3期208-211,共4页
A new hysteretic nonlinear model of quad iced bundle conductors is constructed. The bifurcation equation is obtained by applying the undetermined fundamental frequency method of the complex normal form. The transition... A new hysteretic nonlinear model of quad iced bundle conductors is constructed. The bifurcation equation is obtained by applying the undetermined fundamental frequency method of the complex normal form. The transition set and bifurcation diagrams for the singularity are presented. Then the corresponding relations between the unfolding parameters and the system parameters are given, and the sensitivity parameters and its range of values are obtained to analyze and to control the galloping of the quad iced bundle conductor. 展开更多
关键词 Fluid dynamics Mathematical physics Electronics and devices
下载PDF
Flexible electronics with dynamic interfaces for biomedical monitoring,stimulation,and characterization
5
作者 Xu Guo Raudel Avila +1 位作者 Yonggang Huang Zhaoqian Xie 《International Journal of Mechanical System Dynamics》 2021年第1期52-70,共19页
Recent developments in the fields of materials science and engineering technology(mechanical,electrical,biomedical)lay the foundation to design flexible bioelec-tronics with dynamic interfaces,widely used in biomedica... Recent developments in the fields of materials science and engineering technology(mechanical,electrical,biomedical)lay the foundation to design flexible bioelec-tronics with dynamic interfaces,widely used in biomedical/clinical monitoring,stimulation,and characterization.Examples of this technology include body motion and physiological signal monitoring through soft wearable devices,mechanical characterization of biological tissues,skin stimulation using dynamic actuators,and energy harvesting in biomedical implants.Typically,these bioelectronic systems feature thin form factors for enhanced flexibility and soft elastomeric encapsula-tions that provide skin‐compliant mechanics for seamless integration with biological tissues.This review examines the rapid and continuous progress of bioelectronics in the context of design strategies including materials,mechanics,and structure to achieve high performance dynamic interfaces in biomedicine.It concludes with a concise summary and insights into the ongoing opportunities and challenges facing developments of bioelectronics with dynamic interfaces for future applications. 展开更多
关键词 energy harvesters flexible and stretchable electronics health monitors vibration dynamics wearable devices
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部