Currently, the article analyzes the CAN bus's rule of priority's arbitration bit by bit without destroy. It elicits the conclusion that if static priority based on the affirmatory system model is used, the lower pri...Currently, the article analyzes the CAN bus's rule of priority's arbitration bit by bit without destroy. It elicits the conclusion that if static priority based on the affirmatory system model is used, the lower priority's messages will be delayed considerably more, even some data will be lost when the bus's bandwidth is widely used. The scheduling cannot be modified neither during the system when static priority is used. The dynamic priority promoting method and the math model of SQSA and SQMA are presented; it analyzes the model's rate of taking in and sending out in large quantities, the largest delay, the problems and solutions when using SQMA. In the end, it is confirmed that the method of improving dynamic priority has good performances on the network rate of taking in and sending out in large quantities, the average delay, and the rate of network usage by emulational experiments.展开更多
Two utility-optimization dynamic subcarrier allocation(DSA) algorithms are designed for single carrier frequency division multiple access system(SC-FDMA).The two proposed algorithms aim to support diverse transmission...Two utility-optimization dynamic subcarrier allocation(DSA) algorithms are designed for single carrier frequency division multiple access system(SC-FDMA).The two proposed algorithms aim to support diverse transmission capacity requirements in wireless networks,which consider both the channel state information(CSI) and the capacity requirements of each user by setting appropriate utility functions.Simulation results show that with considerable lower computational complexity,the first utility-optimization algorithm can meet the system capacity requirements of each user effectively.However,the rate-sum capacity performance is poor.Furthermore,the second proposed utility-optimization algorithm can contribute a better trade-off between system rate-sum capacity requirement and the capacity requirements of each user by introducing the signal to noise ratio(SNR) information to the utility function based on the first utility-optimization algorithm,which can improve the user requirements processing capability as well as achieve a better sum-rate capacity.展开更多
Algebraic dynamics approach and algebraic dynamics algorithm for the solution of nonlinear partial differential equations are applied to the nonlinear advection equa-tion. The results show that the approach is effecti...Algebraic dynamics approach and algebraic dynamics algorithm for the solution of nonlinear partial differential equations are applied to the nonlinear advection equa-tion. The results show that the approach is effective for the exact analytical solu-tion and the algorithm has higher precision than other existing algorithms in nu-merical computation for the nonlinear advection equation.展开更多
基金supported by the National Natural Science Foundation of China (50421703)the National Key Laboratory of Electrical Engineering of Naval Engineering University
文摘Currently, the article analyzes the CAN bus's rule of priority's arbitration bit by bit without destroy. It elicits the conclusion that if static priority based on the affirmatory system model is used, the lower priority's messages will be delayed considerably more, even some data will be lost when the bus's bandwidth is widely used. The scheduling cannot be modified neither during the system when static priority is used. The dynamic priority promoting method and the math model of SQSA and SQMA are presented; it analyzes the model's rate of taking in and sending out in large quantities, the largest delay, the problems and solutions when using SQMA. In the end, it is confirmed that the method of improving dynamic priority has good performances on the network rate of taking in and sending out in large quantities, the average delay, and the rate of network usage by emulational experiments.
基金Supported by the National Basic Research Program of China(No.61393010101-1)the Defense-related Science & Technology Pre-Research Project of Shipbuilding Institute(No.10J3.1.6)
文摘Two utility-optimization dynamic subcarrier allocation(DSA) algorithms are designed for single carrier frequency division multiple access system(SC-FDMA).The two proposed algorithms aim to support diverse transmission capacity requirements in wireless networks,which consider both the channel state information(CSI) and the capacity requirements of each user by setting appropriate utility functions.Simulation results show that with considerable lower computational complexity,the first utility-optimization algorithm can meet the system capacity requirements of each user effectively.However,the rate-sum capacity performance is poor.Furthermore,the second proposed utility-optimization algorithm can contribute a better trade-off between system rate-sum capacity requirement and the capacity requirements of each user by introducing the signal to noise ratio(SNR) information to the utility function based on the first utility-optimization algorithm,which can improve the user requirements processing capability as well as achieve a better sum-rate capacity.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 90503008 and 10775100)the Doctoral Program Foundation from the Ministry of Education of China,and the Center of Theoretical Nuclear Physics of HIRFL of China
文摘Algebraic dynamics approach and algebraic dynamics algorithm for the solution of nonlinear partial differential equations are applied to the nonlinear advection equa-tion. The results show that the approach is effective for the exact analytical solu-tion and the algorithm has higher precision than other existing algorithms in nu-merical computation for the nonlinear advection equation.