We describe the current plans for a spectroscopic survey of millions of stars in the Milky Way galaxy using the Guo Shou Jing Telescope (GSJT, formerly calledthe Large sky Area Multi-Object fiber Spectroscopic Telesc...We describe the current plans for a spectroscopic survey of millions of stars in the Milky Way galaxy using the Guo Shou Jing Telescope (GSJT, formerly calledthe Large sky Area Multi-Object fiber Spectroscopic Telescope -- LAMOST). The survey will obtain spectra for 2.5 million stars brighter than r 〈 19 during dark/grey time, and 5 million stars brighter than r 〈 17 or J 〈 16 on nights that are moonlit or have low transparency. The survey will begin in the fall of 2012, and will run for at least four years. The telescope's design constrains the optimal declination range for observations to 10~ 〈 di 〈 50~, and site conditions lead to an emphasis on stars in the direction of the Galactic anticenter. The survey is divided into three parts with different target selection strategies: disk, anticenter, and spheroid. The resulting dataset will be used to study the merger history of the Milky Way, the substructure and evolution of the disks, the nature of the first generation of stars through identification of the lowest metallicity stars, and star formation through study of open clusters and OB associations. Detailed design of the LAMOST Experiment for Galactic Understanding and Exploration (LEGUE) survey will be completed in summer 2012, after a review of the results of the pilot survey.展开更多
On the basis of recently published astrophysical parameters of the open clusters, we have selected 301 clusters with measurements of their kinematical parameters to trace the local structure and kinematics of the Gala...On the basis of recently published astrophysical parameters of the open clusters, we have selected 301 clusters with measurements of their kinematical parameters to trace the local structure and kinematics of the Galactic disk. The present sample covers a range of over 3.0 kpc from the Sun and gives significant estimates of the disk structure and kinematical parameters of the Galaxy. We derive the disk scale height, vertical displacement of the Sun to the Galactic plane, solar motion with respect to the local standard of rest, circular speed of the Galactic rotation, Galactocentric distance from the Sun, etc. We found that the average scale height of the disk defined by the open clusters is Zh = 58 ± 4pc, with a vertical displacement of the Sun below the Galactic plane of z0 -= - 16±4 pc. Clusters with ages older than 50 Myr are less concentrated in the average plane (Zh=67 ±6pc) than the younger clusters (Zh = 51±5pc). Using the approximation of axisymmetric circular rotation, we have derived the distance to the Galactic center from the Sun R0 = 8.03 ±0.70 kpc, which is in excellent agreement with the best estimate of the Galactocentric distance. From a kinematical analysis, we found an agedependent rotation of the Galaxy. The older clusters exhibit a lower velocity of vorticity, but have the same shear as the younger clusters. The mean rotation velocity of the Galaxy was obtained as 235 ± 10 km s-1.展开更多
基金partially supported by the National Natural Science Foundation of China (Grant Nos. 10573022, 10973015, 11061120454and 11243003)the US National Science Foundation through grant AST-09-37523
文摘We describe the current plans for a spectroscopic survey of millions of stars in the Milky Way galaxy using the Guo Shou Jing Telescope (GSJT, formerly calledthe Large sky Area Multi-Object fiber Spectroscopic Telescope -- LAMOST). The survey will obtain spectra for 2.5 million stars brighter than r 〈 19 during dark/grey time, and 5 million stars brighter than r 〈 17 or J 〈 16 on nights that are moonlit or have low transparency. The survey will begin in the fall of 2012, and will run for at least four years. The telescope's design constrains the optimal declination range for observations to 10~ 〈 di 〈 50~, and site conditions lead to an emphasis on stars in the direction of the Galactic anticenter. The survey is divided into three parts with different target selection strategies: disk, anticenter, and spheroid. The resulting dataset will be used to study the merger history of the Milky Way, the substructure and evolution of the disks, the nature of the first generation of stars through identification of the lowest metallicity stars, and star formation through study of open clusters and OB associations. Detailed design of the LAMOST Experiment for Galactic Understanding and Exploration (LEGUE) survey will be completed in summer 2012, after a review of the results of the pilot survey.
基金funded by the National Natural Science Foundation of China (NSFC) (Grant No.10673005)
文摘On the basis of recently published astrophysical parameters of the open clusters, we have selected 301 clusters with measurements of their kinematical parameters to trace the local structure and kinematics of the Galactic disk. The present sample covers a range of over 3.0 kpc from the Sun and gives significant estimates of the disk structure and kinematical parameters of the Galaxy. We derive the disk scale height, vertical displacement of the Sun to the Galactic plane, solar motion with respect to the local standard of rest, circular speed of the Galactic rotation, Galactocentric distance from the Sun, etc. We found that the average scale height of the disk defined by the open clusters is Zh = 58 ± 4pc, with a vertical displacement of the Sun below the Galactic plane of z0 -= - 16±4 pc. Clusters with ages older than 50 Myr are less concentrated in the average plane (Zh=67 ±6pc) than the younger clusters (Zh = 51±5pc). Using the approximation of axisymmetric circular rotation, we have derived the distance to the Galactic center from the Sun R0 = 8.03 ±0.70 kpc, which is in excellent agreement with the best estimate of the Galactocentric distance. From a kinematical analysis, we found an agedependent rotation of the Galaxy. The older clusters exhibit a lower velocity of vorticity, but have the same shear as the younger clusters. The mean rotation velocity of the Galaxy was obtained as 235 ± 10 km s-1.