In this paper, dynamic economic dispatch model is proposed for power systems with bulk wind power integration. The wind turbine generators are assumed to partially undertake the spinning reserve for the thermal genera...In this paper, dynamic economic dispatch model is proposed for power systems with bulk wind power integration. The wind turbine generators are assumed to partially undertake the spinning reserve for the thermal generator. A double-layer optimization model is proposed. The outer layer use the differential evolution to search for the power output of thermal generators, and the inner layer use the primal-dual interior point method to solve the OPF of the established output state. Finally, the impact of spinning reserve with wind power on power system operating is validated.展开更多
A novel approach was proposed to allocate spinning reserve for dynamic economic dispatch.The proposed approach set up a two-stage stochastic programming model to allocate reserve.The model was solved using a decompose...A novel approach was proposed to allocate spinning reserve for dynamic economic dispatch.The proposed approach set up a two-stage stochastic programming model to allocate reserve.The model was solved using a decomposed algorithm based on Benders' decomposition.The model and the algorithm were applied to a simple 3-node system and an actual 445-node system for verification,respectively.Test results show that the model can save 84.5 US $ cost for the testing three-node system,and the algorithm can solve the model for 445-node system within 5 min.The test results also illustrate that the proposed approach is efficient and suitable for large system calculation.展开更多
Microgrids integrate distributed renewable energy resources, controllable loads and energy storage in a more economic and reliable fashion. Battery energy storage units are essential for microgrid operation, which mak...Microgrids integrate distributed renewable energy resources, controllable loads and energy storage in a more economic and reliable fashion. Battery energy storage units are essential for microgrid operation, which make microgird become a strong coupling system in the time domain. Hence, the traditional methods of static dispatch are no longer suitable for microgrids. This paper proposes a dynamic economic dispatch method for microgrids. Considering microgrid as a discrete time system, the dynamic economic dispatch is to find the optimal control strategy for the system in finite time period. Based on this idea, the dynamic economic dispatch model for microgrids is established, and then the corresponding dynamic programming algorithm is designed. Finally, an example of microgrid is given, and the dynamic economic dispatch results are compared with that of the static dispatch. The comparison confirms the effectiveness of the proposed dynamic dispatch method.展开更多
The hydro unit economic load dispatch (ELD) is of great importance in energy conservation and emission reduction. Dynamic programming (DP) and genetic algorithm (GA) are two representative algorithms for solving...The hydro unit economic load dispatch (ELD) is of great importance in energy conservation and emission reduction. Dynamic programming (DP) and genetic algorithm (GA) are two representative algorithms for solving ELD problems. The goal of this study was to examine the performance of DP and GA while they were applied to ELD. We established numerical experiments to conduct performance comparisons between DP and GA with two given schemes. The schemes included comparing the CPU time of the algorithms when they had the same solution quality, and comparing the solution quality when they had the same CPU time. The numerical experiments were applied to the Three Gorges Reservoir in China, which is equipped with 26 hydro generation units. We found the relation between the performance of algorithms and the number of units through experiments. Results show that GA is adept at searching for optimal solutions in low-dimensional cases. In some cases, such as with a number of units of less than 10, GA's performance is superior to that of a coarse-grid DP. However, GA loses its superiority in high-dimensional cases. DP is powerful in obtaining stable and high-quality solutions. Its performance can be maintained even while searching over a large solution space. Nevertheless, due to its exhaustive enumerating nature, it costs excess time in low-dimensional cases.展开更多
Renewable sources of energy are being integrated into the power grids due to their economic and environmental merits as compared with the traditional fossil-fuel-fired power generation. However, their significant pene...Renewable sources of energy are being integrated into the power grids due to their economic and environmental merits as compared with the traditional fossil-fuel-fired power generation. However, their significant penetration demands a thorough research in terms of system reliability, that is, security and stability. In this paper, Security Constrained Multi Objective Dynamic Economic Dispatch (SCMODED) problem considering cubic thermal cubic cost function, wind, solar penetration, cubic transmission power losses and cubic emissions cost function as objectives is first formulated. Both HVDC and HVAC lines are included in their formulation. Various approaches like probabilistic load flow (PLF), scenario based method, participation factors and Harmony Search algorithm etc. are employed in the solution process. Security and stability effects of renewable energy (RE) penetration are investigated and analyzed. The simulated results reveal that RE penetration leads to reduced cost and emissions and increased security concerns. Further, there is increased power system instability and hence increased load shedding so as to help the power system attain steady state stability. Inclusion of HVDC lines facilitates rapid and fast control to increase the transient stability limit by the action of the converter ignition angle (CIA) and converter extinction angle (CEA).展开更多
Dynamic Economic Emission Dispatch(DEED)aims to optimize control over fuel cost and pollution emission,two conflicting objectives,by scheduling the output power of various units at specific times.Although many methods...Dynamic Economic Emission Dispatch(DEED)aims to optimize control over fuel cost and pollution emission,two conflicting objectives,by scheduling the output power of various units at specific times.Although many methods well-performed on the DEED problem,most of them fail to achieve expected results in practice due to a lack of effective trade-off mechanisms between the convergence and diversity of non-dominated optimal dispatching solutions.To address this issue,a new multi-objective solver called Multi-Objective Golden Jackal Optimization(MOGJO)algorithm is proposed to cope with the DEED problem.The proposed algorithm first stores non-dominated optimal solutions found so far into an archive.Then,it chooses the best dispatching solution from the archive as the leader through a selection mechanism designed based on elite selection strategy and Euclidean distance index method.This mechanism can guide the algorithm to search for better dispatching solutions in the direction of reducing fuel costs and pollutant emissions.Moreover,the basic golden jackal optimization algorithm has the drawback of insufficient search,which hinders its ability to effectively discover more Pareto solutions.To this end,a non-linear control parameter based on the cosine function is introduced to enhance global exploration of the dispatching space,thus improving the efficiency of finding the optimal dispatching solutions.The proposed MOGJO is evaluated on the latest CEC benchmark test functions,and its superiority over the state-of-the-art multi-objective optimizers is highlighted by performance indicators.Also,empirical results on 5-unit,10-unit,IEEE 30-bus,and 30-unit systems show that the MOGJO can provide competitive compromise scheduling solutions compared to published DEED methods.Finally,in the analysis of the Pareto dominance relationship and the Euclidean distance index,the optimal dispatching solutions provided by MOGJO are the closest to the ideal solutions for minimizing fuel costs and pollution emissions simultaneously,compared to the latest published DEED solutions.展开更多
This paper proposes a deterministic two-stage mixed integer linear programming(TSMILP)approach to solve the reserve constrained dynamic economic dispatch(DED)problem considering valve-point effect(VPE).In stage one,th...This paper proposes a deterministic two-stage mixed integer linear programming(TSMILP)approach to solve the reserve constrained dynamic economic dispatch(DED)problem considering valve-point effect(VPE).In stage one,the nonsmooth cost function and the transmission loss are piecewise linearized and consequently the DED problem is formulated as a mixed integer linear programming(MILP)problem,which can be solved by commercial solvers.In stage two,based on the solution obtained in stage one,a range compression technique is proposed to make a further exploitation in the subspace of the whole solution domain.Due to the linear approximation of the transmission loss,the solution obtained in stage two dose not strictly satisfies the power balance constraint.Hence,a forward procedure is employed to eliminate the error.The simulation results on four test systems show that TSMILP makes satisfactory performances,in comparison with the existing methods.展开更多
To utilize electricity in a clean and integrated manner,a zero-carbon hydro-photovoltaic(PV)-pumped hydro storage(PHS)integrated power system is studied,considering the uncertainties of PV and load demand.It is a chal...To utilize electricity in a clean and integrated manner,a zero-carbon hydro-photovoltaic(PV)-pumped hydro storage(PHS)integrated power system is studied,considering the uncertainties of PV and load demand.It is a challenge for operators to develop a dynamic dispatch mechanism for such a system,and traditional dispatch methods are difficult to adapt to random changes in the actual environment.Therefore,this study proposes a real-time dynamic dispatch strategy considering economic operation and complementary regulatory ability.First,the dynamic dispatch of a hydro-PV-PHS integrated power system is presented as a multi-objective optimization problem and the weight factor between different goals is effectively calculated using information entropy.Afterwards,the dispatch model is converted into the Markov decision process,where the dynamic dispatch decision is formulated as a reinforcement learning framework.Then,a deep deterministic policy gradient(DDPG)is deployed towards the online decision for dispatch in continuous action spaces.Finally,a case study is applied to evaluate the performance of the proposed method based on a real hydroPV-PHS integrated power system in China.Simulations show that the system agent reduces the power volatility of supply by 26.7%after hydropower regulating and further relieves power fluctuation at the point of common coupling(PCC)to the upperlevel grid by 3.28%after PHS participation.The comparison results verify the effectiveness of the proposed method.展开更多
文摘In this paper, dynamic economic dispatch model is proposed for power systems with bulk wind power integration. The wind turbine generators are assumed to partially undertake the spinning reserve for the thermal generator. A double-layer optimization model is proposed. The outer layer use the differential evolution to search for the power output of thermal generators, and the inner layer use the primal-dual interior point method to solve the OPF of the established output state. Finally, the impact of spinning reserve with wind power on power system operating is validated.
基金Projects(51007047,51077087)supported by the National Natural Science Foundation of ChinaProject(2013CB228205)supported by the National Key Basic Research Program of China+1 种基金Project(20100131120039)supported by Higher Learning Doctor Discipline End Scientific Research Fund of the Ministry of Education Institution,ChinaProject(ZR2010EQ035)supported by the Natural Science Foundation of Shandong Province,China
文摘A novel approach was proposed to allocate spinning reserve for dynamic economic dispatch.The proposed approach set up a two-stage stochastic programming model to allocate reserve.The model was solved using a decomposed algorithm based on Benders' decomposition.The model and the algorithm were applied to a simple 3-node system and an actual 445-node system for verification,respectively.Test results show that the model can save 84.5 US $ cost for the testing three-node system,and the algorithm can solve the model for 445-node system within 5 min.The test results also illustrate that the proposed approach is efficient and suitable for large system calculation.
文摘Microgrids integrate distributed renewable energy resources, controllable loads and energy storage in a more economic and reliable fashion. Battery energy storage units are essential for microgrid operation, which make microgird become a strong coupling system in the time domain. Hence, the traditional methods of static dispatch are no longer suitable for microgrids. This paper proposes a dynamic economic dispatch method for microgrids. Considering microgrid as a discrete time system, the dynamic economic dispatch is to find the optimal control strategy for the system in finite time period. Based on this idea, the dynamic economic dispatch model for microgrids is established, and then the corresponding dynamic programming algorithm is designed. Finally, an example of microgrid is given, and the dynamic economic dispatch results are compared with that of the static dispatch. The comparison confirms the effectiveness of the proposed dynamic dispatch method.
基金supported by the National Basic Research Program of China(973 Program,Grant No.2013CB036406)the National Natural Science Foundation of China(Grant No.51179044)the Research Innovation Program for College Graduates in Jiangsu Province of China(Grant No.CXZZ12-0242)
文摘The hydro unit economic load dispatch (ELD) is of great importance in energy conservation and emission reduction. Dynamic programming (DP) and genetic algorithm (GA) are two representative algorithms for solving ELD problems. The goal of this study was to examine the performance of DP and GA while they were applied to ELD. We established numerical experiments to conduct performance comparisons between DP and GA with two given schemes. The schemes included comparing the CPU time of the algorithms when they had the same solution quality, and comparing the solution quality when they had the same CPU time. The numerical experiments were applied to the Three Gorges Reservoir in China, which is equipped with 26 hydro generation units. We found the relation between the performance of algorithms and the number of units through experiments. Results show that GA is adept at searching for optimal solutions in low-dimensional cases. In some cases, such as with a number of units of less than 10, GA's performance is superior to that of a coarse-grid DP. However, GA loses its superiority in high-dimensional cases. DP is powerful in obtaining stable and high-quality solutions. Its performance can be maintained even while searching over a large solution space. Nevertheless, due to its exhaustive enumerating nature, it costs excess time in low-dimensional cases.
文摘Renewable sources of energy are being integrated into the power grids due to their economic and environmental merits as compared with the traditional fossil-fuel-fired power generation. However, their significant penetration demands a thorough research in terms of system reliability, that is, security and stability. In this paper, Security Constrained Multi Objective Dynamic Economic Dispatch (SCMODED) problem considering cubic thermal cubic cost function, wind, solar penetration, cubic transmission power losses and cubic emissions cost function as objectives is first formulated. Both HVDC and HVAC lines are included in their formulation. Various approaches like probabilistic load flow (PLF), scenario based method, participation factors and Harmony Search algorithm etc. are employed in the solution process. Security and stability effects of renewable energy (RE) penetration are investigated and analyzed. The simulated results reveal that RE penetration leads to reduced cost and emissions and increased security concerns. Further, there is increased power system instability and hence increased load shedding so as to help the power system attain steady state stability. Inclusion of HVDC lines facilitates rapid and fast control to increase the transient stability limit by the action of the converter ignition angle (CIA) and converter extinction angle (CEA).
基金supported by the National Natural Science Foundation of China under Grant No.61802328,61972333,and 61771415.
文摘Dynamic Economic Emission Dispatch(DEED)aims to optimize control over fuel cost and pollution emission,two conflicting objectives,by scheduling the output power of various units at specific times.Although many methods well-performed on the DEED problem,most of them fail to achieve expected results in practice due to a lack of effective trade-off mechanisms between the convergence and diversity of non-dominated optimal dispatching solutions.To address this issue,a new multi-objective solver called Multi-Objective Golden Jackal Optimization(MOGJO)algorithm is proposed to cope with the DEED problem.The proposed algorithm first stores non-dominated optimal solutions found so far into an archive.Then,it chooses the best dispatching solution from the archive as the leader through a selection mechanism designed based on elite selection strategy and Euclidean distance index method.This mechanism can guide the algorithm to search for better dispatching solutions in the direction of reducing fuel costs and pollutant emissions.Moreover,the basic golden jackal optimization algorithm has the drawback of insufficient search,which hinders its ability to effectively discover more Pareto solutions.To this end,a non-linear control parameter based on the cosine function is introduced to enhance global exploration of the dispatching space,thus improving the efficiency of finding the optimal dispatching solutions.The proposed MOGJO is evaluated on the latest CEC benchmark test functions,and its superiority over the state-of-the-art multi-objective optimizers is highlighted by performance indicators.Also,empirical results on 5-unit,10-unit,IEEE 30-bus,and 30-unit systems show that the MOGJO can provide competitive compromise scheduling solutions compared to published DEED methods.Finally,in the analysis of the Pareto dominance relationship and the Euclidean distance index,the optimal dispatching solutions provided by MOGJO are the closest to the ideal solutions for minimizing fuel costs and pollution emissions simultaneously,compared to the latest published DEED solutions.
基金supported by Guangdong Yudean Group Co.LTD,Guangzhou 510630,China.
文摘This paper proposes a deterministic two-stage mixed integer linear programming(TSMILP)approach to solve the reserve constrained dynamic economic dispatch(DED)problem considering valve-point effect(VPE).In stage one,the nonsmooth cost function and the transmission loss are piecewise linearized and consequently the DED problem is formulated as a mixed integer linear programming(MILP)problem,which can be solved by commercial solvers.In stage two,based on the solution obtained in stage one,a range compression technique is proposed to make a further exploitation in the subspace of the whole solution domain.Due to the linear approximation of the transmission loss,the solution obtained in stage two dose not strictly satisfies the power balance constraint.Hence,a forward procedure is employed to eliminate the error.The simulation results on four test systems show that TSMILP makes satisfactory performances,in comparison with the existing methods.
基金supported by the National Key R&D Program of China under Grant 2018YFB0905200.
文摘To utilize electricity in a clean and integrated manner,a zero-carbon hydro-photovoltaic(PV)-pumped hydro storage(PHS)integrated power system is studied,considering the uncertainties of PV and load demand.It is a challenge for operators to develop a dynamic dispatch mechanism for such a system,and traditional dispatch methods are difficult to adapt to random changes in the actual environment.Therefore,this study proposes a real-time dynamic dispatch strategy considering economic operation and complementary regulatory ability.First,the dynamic dispatch of a hydro-PV-PHS integrated power system is presented as a multi-objective optimization problem and the weight factor between different goals is effectively calculated using information entropy.Afterwards,the dispatch model is converted into the Markov decision process,where the dynamic dispatch decision is formulated as a reinforcement learning framework.Then,a deep deterministic policy gradient(DDPG)is deployed towards the online decision for dispatch in continuous action spaces.Finally,a case study is applied to evaluate the performance of the proposed method based on a real hydroPV-PHS integrated power system in China.Simulations show that the system agent reduces the power volatility of supply by 26.7%after hydropower regulating and further relieves power fluctuation at the point of common coupling(PCC)to the upperlevel grid by 3.28%after PHS participation.The comparison results verify the effectiveness of the proposed method.