Dynamic Economic Emission Dispatch(DEED)aims to optimize control over fuel cost and pollution emission,two conflicting objectives,by scheduling the output power of various units at specific times.Although many methods...Dynamic Economic Emission Dispatch(DEED)aims to optimize control over fuel cost and pollution emission,two conflicting objectives,by scheduling the output power of various units at specific times.Although many methods well-performed on the DEED problem,most of them fail to achieve expected results in practice due to a lack of effective trade-off mechanisms between the convergence and diversity of non-dominated optimal dispatching solutions.To address this issue,a new multi-objective solver called Multi-Objective Golden Jackal Optimization(MOGJO)algorithm is proposed to cope with the DEED problem.The proposed algorithm first stores non-dominated optimal solutions found so far into an archive.Then,it chooses the best dispatching solution from the archive as the leader through a selection mechanism designed based on elite selection strategy and Euclidean distance index method.This mechanism can guide the algorithm to search for better dispatching solutions in the direction of reducing fuel costs and pollutant emissions.Moreover,the basic golden jackal optimization algorithm has the drawback of insufficient search,which hinders its ability to effectively discover more Pareto solutions.To this end,a non-linear control parameter based on the cosine function is introduced to enhance global exploration of the dispatching space,thus improving the efficiency of finding the optimal dispatching solutions.The proposed MOGJO is evaluated on the latest CEC benchmark test functions,and its superiority over the state-of-the-art multi-objective optimizers is highlighted by performance indicators.Also,empirical results on 5-unit,10-unit,IEEE 30-bus,and 30-unit systems show that the MOGJO can provide competitive compromise scheduling solutions compared to published DEED methods.Finally,in the analysis of the Pareto dominance relationship and the Euclidean distance index,the optimal dispatching solutions provided by MOGJO are the closest to the ideal solutions for minimizing fuel costs and pollution emissions simultaneously,compared to the latest published DEED solutions.展开更多
针对综合能源系统(integratedenergysystem,IES)中碳捕集装置(carbon capture and storage,CCS)和电转气装置(power to gas,P2G)低碳运行配合度低以及储能装置碳排放特性刻画不精确的问题,该文提出一种融合CCS-P2G协同运行模式及储能低...针对综合能源系统(integratedenergysystem,IES)中碳捕集装置(carbon capture and storage,CCS)和电转气装置(power to gas,P2G)低碳运行配合度低以及储能装置碳排放特性刻画不精确的问题,该文提出一种融合CCS-P2G协同运行模式及储能低碳特性的扩展碳排放流模型。该模型于供能侧构建CCS与P2G的耦合关系,实现P2G的低碳经济运行;于储能侧引入“电碳比(electricity-carbonratio,ECR)”的概念,刻画储能装置的碳排放特性,挖掘供能–储能双侧协调低碳调度潜力。在此基础上,构建考虑风电、电价和电热气负荷等多元不确定性的综合能源系统低碳经济调度模型,为实现模型的快速高效求解,采用并行多维近似动态规划算法,通过构建多层并行循环嵌套框架,在不损失求解精度的前提下,大大提高求解效率。以改进的电网14节点–热网6节点–天然气网6节点(E14-H6-G6)系统和E57-H12-G12系统为例,验证了所提模型和算法的有效性。展开更多
为应对风电并网给电力经济调度带来的影响,构建了含风电场的多目标动态环境经济调度模型。该模型能同时兼顾燃料费用目标及污染排放目标,并计及阀点效应、网络损耗以及由风电不确定性引起的旋转备用需求。为求解该模型,达到为决策者提...为应对风电并网给电力经济调度带来的影响,构建了含风电场的多目标动态环境经济调度模型。该模型能同时兼顾燃料费用目标及污染排放目标,并计及阀点效应、网络损耗以及由风电不确定性引起的旋转备用需求。为求解该模型,达到为决策者提供最优调度方案集的目的,将基于分解的多目标进化算法(multi-objective evolutionary algorithm based on decomposition,MOEA/D)应用于动态调度领域。针对模型的复杂约束,在算法中加入对机组出力的实时调整及对约束违反量的适当惩罚,并利用归一化操作,避免算法向某一目标过度进化。经过对算例的仿真及对不同调度方案的对比分析,验证了所提调度模型的合理性以及改进MOEA/D算法解决此类问题的有效性。展开更多
为了应对动态环境经济调度(DEED)问题的高维性和大规模约束性,提出了一种自适应多目标差分进化算法(ADEA)。设计自适应差分交叉模块,提出改进的current to best/1交叉策略提高种群的多样性,有效地提高传统进化算法的探索与开采能力,提...为了应对动态环境经济调度(DEED)问题的高维性和大规模约束性,提出了一种自适应多目标差分进化算法(ADEA)。设计自适应差分交叉模块,提出改进的current to best/1交叉策略提高种群的多样性,有效地提高传统进化算法的探索与开采能力,提出一种修补策略处理功率平衡约束和爬坡率约束。为了验证该方法的有效性,数值仿真将ADEA应用于10机系统进行测试,并与同类算法展开比较,仿真结果表明ADEA具有较好的收敛能力,获得的Pareto前沿具有较好的均匀性和延展性,通过模糊决策获得的最好折中解能为电力系统调度人员提供较为合理的调度方案。展开更多
基金supported by the National Natural Science Foundation of China under Grant No.61802328,61972333,and 61771415.
文摘Dynamic Economic Emission Dispatch(DEED)aims to optimize control over fuel cost and pollution emission,two conflicting objectives,by scheduling the output power of various units at specific times.Although many methods well-performed on the DEED problem,most of them fail to achieve expected results in practice due to a lack of effective trade-off mechanisms between the convergence and diversity of non-dominated optimal dispatching solutions.To address this issue,a new multi-objective solver called Multi-Objective Golden Jackal Optimization(MOGJO)algorithm is proposed to cope with the DEED problem.The proposed algorithm first stores non-dominated optimal solutions found so far into an archive.Then,it chooses the best dispatching solution from the archive as the leader through a selection mechanism designed based on elite selection strategy and Euclidean distance index method.This mechanism can guide the algorithm to search for better dispatching solutions in the direction of reducing fuel costs and pollutant emissions.Moreover,the basic golden jackal optimization algorithm has the drawback of insufficient search,which hinders its ability to effectively discover more Pareto solutions.To this end,a non-linear control parameter based on the cosine function is introduced to enhance global exploration of the dispatching space,thus improving the efficiency of finding the optimal dispatching solutions.The proposed MOGJO is evaluated on the latest CEC benchmark test functions,and its superiority over the state-of-the-art multi-objective optimizers is highlighted by performance indicators.Also,empirical results on 5-unit,10-unit,IEEE 30-bus,and 30-unit systems show that the MOGJO can provide competitive compromise scheduling solutions compared to published DEED methods.Finally,in the analysis of the Pareto dominance relationship and the Euclidean distance index,the optimal dispatching solutions provided by MOGJO are the closest to the ideal solutions for minimizing fuel costs and pollution emissions simultaneously,compared to the latest published DEED solutions.
文摘针对综合能源系统(integratedenergysystem,IES)中碳捕集装置(carbon capture and storage,CCS)和电转气装置(power to gas,P2G)低碳运行配合度低以及储能装置碳排放特性刻画不精确的问题,该文提出一种融合CCS-P2G协同运行模式及储能低碳特性的扩展碳排放流模型。该模型于供能侧构建CCS与P2G的耦合关系,实现P2G的低碳经济运行;于储能侧引入“电碳比(electricity-carbonratio,ECR)”的概念,刻画储能装置的碳排放特性,挖掘供能–储能双侧协调低碳调度潜力。在此基础上,构建考虑风电、电价和电热气负荷等多元不确定性的综合能源系统低碳经济调度模型,为实现模型的快速高效求解,采用并行多维近似动态规划算法,通过构建多层并行循环嵌套框架,在不损失求解精度的前提下,大大提高求解效率。以改进的电网14节点–热网6节点–天然气网6节点(E14-H6-G6)系统和E57-H12-G12系统为例,验证了所提模型和算法的有效性。
文摘为应对风电并网给电力经济调度带来的影响,构建了含风电场的多目标动态环境经济调度模型。该模型能同时兼顾燃料费用目标及污染排放目标,并计及阀点效应、网络损耗以及由风电不确定性引起的旋转备用需求。为求解该模型,达到为决策者提供最优调度方案集的目的,将基于分解的多目标进化算法(multi-objective evolutionary algorithm based on decomposition,MOEA/D)应用于动态调度领域。针对模型的复杂约束,在算法中加入对机组出力的实时调整及对约束违反量的适当惩罚,并利用归一化操作,避免算法向某一目标过度进化。经过对算例的仿真及对不同调度方案的对比分析,验证了所提调度模型的合理性以及改进MOEA/D算法解决此类问题的有效性。
文摘为了应对动态环境经济调度(DEED)问题的高维性和大规模约束性,提出了一种自适应多目标差分进化算法(ADEA)。设计自适应差分交叉模块,提出改进的current to best/1交叉策略提高种群的多样性,有效地提高传统进化算法的探索与开采能力,提出一种修补策略处理功率平衡约束和爬坡率约束。为了验证该方法的有效性,数值仿真将ADEA应用于10机系统进行测试,并与同类算法展开比较,仿真结果表明ADEA具有较好的收敛能力,获得的Pareto前沿具有较好的均匀性和延展性,通过模糊决策获得的最好折中解能为电力系统调度人员提供较为合理的调度方案。