To solve the finite-time error-tracking problem in mis-sile guidance,this paper presents a unified design approach through error dynamics and free-time convergence theory.The proposed approach is initiated by establis...To solve the finite-time error-tracking problem in mis-sile guidance,this paper presents a unified design approach through error dynamics and free-time convergence theory.The proposed approach is initiated by establishing a desired model for free-time convergent error dynamics,characterized by its independence from initial conditions and guidance parameters,and adjustable convergence time.This foundation facilitates the derivation of specific guidance laws that integrate constraints such as leading angle,impact angle,and impact time.The theoretical framework of this study elucidates the nuances and synergies between the proposed guidance laws and existing methodologies.Empirical evaluations through simulation comparisons underscore the enhanced accuracy and adaptability of the proposed laws.展开更多
A new method was proposed, in which a high-power CO2 laser modulated by high frequency was used as the driv- ing source to heat up a surface-temperature sensor. The continual beam and the pulsed beam sent out by the s...A new method was proposed, in which a high-power CO2 laser modulated by high frequency was used as the driv- ing source to heat up a surface-temperature sensor. The continual beam and the pulsed beam sent out by the same laser could be used in the same system to carry on the static calibration of the radiation thermometer and the dynamic calibration of the temperature sensor to be checked. The frequency-response characteristics of high-speed radiation thermometer surpassed that of the temperature sensor, therefore it could be used as the reference value to calibrate the latter and let system error be cor- rected. Differences in the environment of the sensor installing and the error caused by the change of thermo-physical proper- ty could be avoided. Thus, the difficult problem of traceable dynamic calibration of temperature was solved. In experiment, to obtain the frequency characteristics of the thermocouple and the dynamic performance of the K type thermocouple, which could compensate the dynamic characteristics of the sensor, the sensor was dynamically corrected by using the method, and then the mathematical model was established.展开更多
The analysis and calculating method of dynamic errors of CMMs during probing are discussed.To relate the dynamic displacement errors with the dynamic rotational errors a method for obtaining the displacement errors at...The analysis and calculating method of dynamic errors of CMMs during probing are discussed.To relate the dynamic displacement errors with the dynamic rotational errors a method for obtaining the displacement errors at the probing position from dynamic rotational errors is presented.It is pointed out that the finite element method might be used for modeling dynamic errors.However,dynamic errors are difficult to be modeled so a combined practical and theoretical approach is needed.In addition,the dynamic errors are measured with inductive position sensors.展开更多
In this paper we address the dynamics of compensation cutting process from both Laplace s frequency domain and the time domain of the first time, using the two computer aided analyzing softwares: MATLAB and SIMULI...In this paper we address the dynamics of compensation cutting process from both Laplace s frequency domain and the time domain of the first time, using the two computer aided analyzing softwares: MATLAB and SIMULINK. Theoretical analysis and simulation experiments firstly show that not only the systematical stiffness of workpiece, spindle and tools, but also the regenerated coefficient affects the compensation displacement effect. The results show that the SREC is practicable in reality to decease the spindle induced errors in many engineering applications such as hard boring through simulation and the preliminary experiment results.展开更多
Aim To analyze the mathematical error model of a dynamically tuned gyro (DTG) strapdown northfinder in detail, guide the process of design, manufacture and adjustment of northfinder. Methods Each error source of thi...Aim To analyze the mathematical error model of a dynamically tuned gyro (DTG) strapdown northfinder in detail, guide the process of design, manufacture and adjustment of northfinder. Methods Each error source of this type of northfinder was determined, and the influence of each source on northfinding result was formulated. Results and Conclusion Under the guidance of the analysis, select relevant method for each source which has different effect on result to reduce northfinding error, a type of northfinder meeting the practical requirements of user was developed.展开更多
This research reveals the dependency of floating point computation in nonlinear dynamical systems on machine precision and step-size by applying a multiple-precision approach in the Lorenz nonlinear equations. The pap...This research reveals the dependency of floating point computation in nonlinear dynamical systems on machine precision and step-size by applying a multiple-precision approach in the Lorenz nonlinear equations. The paper also demoastrates the procedures for obtaining a real numerical solution in the Lorenz system with long-time integration and a new multiple-precision-based approach used to identify the maximum effective computation time (MECT) and optimal step-size (OS). In addition, the authors introduce how to analyze round-off error in a long-time integration in some typical cases of nonlinear systems and present its approximate estimate expression.展开更多
A dynamic model of a helical gear rotor system is proposed.Firstly,a generally distributed dynamic model of a helical gear pair with tooth profile errors is developed.The gear mesh is represented by a pair of cylinder...A dynamic model of a helical gear rotor system is proposed.Firstly,a generally distributed dynamic model of a helical gear pair with tooth profile errors is developed.The gear mesh is represented by a pair of cylinders connected by a series of springs and the stiffness of each spring is equal to the effective mesh stiffness.Combining the gear dynamic model with the rotor-bearing system model,the gear-rotor-bearing dynamic model is developed.Then three cases are presented to analyze the dynamic responses of gear systems.The results reveal that the gear dynamic model is effective and advanced for general gear systems,narrow-faced gear,wide-faced gear and gear with tooth profile errors.Finally,the responses of an example helical gear system are also studied to demonstrate the influence of the lead crown reliefs and misalignments.The results show that both of the lead crown relief and misalignment soften the gear mesh stiffness and the responses of the gear system increase with the increasing lead crown reliefs and misalignments.展开更多
The effect of static transmission error on nonlinear dynamic response of the spiral bevel gear system combining with time-varying stiffness and backlash was investigated.Firstly,two different control equations of the ...The effect of static transmission error on nonlinear dynamic response of the spiral bevel gear system combining with time-varying stiffness and backlash was investigated.Firstly,two different control equations of the spiral bevel gear model were adopted,where the static transmission error was expressed in two patterns as predesigned parabolic function and sine function of transmission errors.The dynamic response,bifurcation map,time domain response,phase curve and Poincare map were obtained by applying the explicit Runge-Kutta integration routine with variable-step.A comparative study was carried out and some profound phenomena were detected.The results show that there are many different kinds of tooth rattling phenomena at low speed.With the increase of speed,the system enters into stable motion without any rattling in the region(0.72,1.64),which indicates that the system with predesigned parabolic function of transmission error has preferable capability at high speed.展开更多
The dynamic errors of gyros are the important error sources of a strapdown inertial navigation system. In order to identify the dynamic error model coefficients accurately, the static error model coefficients which la...The dynamic errors of gyros are the important error sources of a strapdown inertial navigation system. In order to identify the dynamic error model coefficients accurately, the static error model coefficients which lay a foundation for compensating while identifying the dynamic error model are identified in the gravity acceleration fields by using angular position function of the three-axis turntable. The angular acceleration and angular velocity are excited on the input, output and spin axis of the gyros when the outer axis and the middle axis of a three-axis turntable are in the uniform angular velocity state simultaneously, while the inner axis of the turntable is in different static angular positions. 8 groups of data are sampled when the inner axis is in 8 different angular positions. These data are the function of the middle axis positions and the inner axis positions. For these data, harmonic analysis method is applied two times versus the middle axis positions and inner axis positions respectively so that the dynamic error model coefficients are finally identified through the least square method. In the meantime the optimal angular velocity of the outer axis and the middle axis are selected by computing the determination value of the information matrix.展开更多
Accurate 3-D fracture network model for rock mass in dam foundation is of vital importance for stability,grouting and seepage analysis of dam foundation.With the aim of reducing deviation between fracture network mode...Accurate 3-D fracture network model for rock mass in dam foundation is of vital importance for stability,grouting and seepage analysis of dam foundation.With the aim of reducing deviation between fracture network model and measured data,a 3-D fracture network dynamic modeling method based on error analysis was proposed.Firstly,errors of four fracture volume density estimation methods(proposed by ODA,KULATILAKE,MAULDON,and SONG)and that of four fracture size estimation methods(proposed by EINSTEIN,SONG and TONON)were respectively compared,and the optimal methods were determined.Additionally,error index representing the deviation between fracture network model and measured data was established with integrated use of fractal dimension and relative absolute error(RAE).On this basis,the downhill simplex method was used to build the dynamic modeling method,which takes the minimum of error index as objective function and dynamically adjusts the fracture density and size parameters to correct the error index.Finally,the 3-D fracture network model could be obtained which meets the requirements.The proposed method was applied for 3-D fractures simulation in Miao Wei hydropower project in China for feasibility verification and the error index reduced from 2.618 to 0.337.展开更多
The paper is focused on identifying error sources in computational fluid dynamics(CFD) predictions of a spray drying process. Seven groups of drying and atomisation parameters were selected for analysis and 13simulati...The paper is focused on identifying error sources in computational fluid dynamics(CFD) predictions of a spray drying process. Seven groups of drying and atomisation parameters were selected for analysis and 13simulation trials were performed. The theoretical results were compared with experimental data and sensitivity of the simulation results to the analysed factors was determined. The following parameters affecting the accuracy of CFD spray modelling were found: gas turbulence model, particle dispersion, atomising air, initial parameters of atomisation and heat losses to the environment. A major difference in the errors committed during modelling of spray drying process for fine and coarse sprays was observed.展开更多
The main cause of dynamic errors is due to frequency response limitation of measurement system. One way of solving this problem is designing an effective inverse filter. Since the problem is ill-conditioned, a small u...The main cause of dynamic errors is due to frequency response limitation of measurement system. One way of solving this problem is designing an effective inverse filter. Since the problem is ill-conditioned, a small uncertainty in the measurement will came large deviation in reconstncted signals. The amplified noise has to be suppressed at the sacrifice of biasing in estimation. The paper presents a kind of designing method of inverse filter in frequency domain based on stabilized solutions of Fredholm integral equations of the fast kind in order to reduce dynamic errors. Compared with previous several work, the method has advantage of generalization. Simulations with different Signal-to-Noise ratio (SNR) are investigated. Flexibility of the method is verified. Application of correcting dynamic error is given.展开更多
Monte Carlo method was adopted to calculate the meshing error considering the manufacture error and assembly error of the meshing point along the time-varying contact line for helical gear pair. The flexural-torsion-a...Monte Carlo method was adopted to calculate the meshing error considering the manufacture error and assembly error of the meshing point along the time-varying contact line for helical gear pair. The flexural-torsion-axis dynamic model coupled was established under the tooth friction force and solved by the perturbation method to compute real dynamic tooth load. The change laws of the friction force and friction torque were obtained in a meshing period. The transmission error formulation was analyzed to introduce meshing excitations. The maximum dynamic transmission error, the maximum meshing force and the maximum dynamic factor were calculated under different speeds, external loads and damping factors. The conclusions can provide theoretical basis for the gear design especially in tooth profile correction.展开更多
To analyze the attitude errors of vertical docking test system of small satellite,the static error and kinematic error of test system are considered.The working principle of test system and coordinate of actuator are ...To analyze the attitude errors of vertical docking test system of small satellite,the static error and kinematic error of test system are considered.The working principle of test system and coordinate of actuator are introduced.The model of friction torque on the joints and torque on docking mechanism are built.Dynamics equation of actuator is built by the Lagrange equation and the Nielsen equation.Under the condition of 24 different angle groups,the calculation of dynamics equation is built by using MATLAB/SIMULINK platform and the kinematic errors of actuator are obtained.The attitude error models of docking mechanism are built.Results shows that the main angle error sources of yaw,row,pitch are not identical.The attitude error of yaw angle can be decreased by compensating the angle error around xaxis.The attitude error of row angle mainly originates in the system error,and it can be eliminated by adjusting non-orthogonal degree.展开更多
In the paper,a new method for the measurement of the dynamic transmission crror of preci-sion hobbing machines using only one sensor is proposed.The dynamic transmission error i ob-tained by demodulating the phase-mod...In the paper,a new method for the measurement of the dynamic transmission crror of preci-sion hobbing machines using only one sensor is proposed.The dynamic transmission error i ob-tained by demodulating the phase-modulated signal according to the Hilbert transform priple.The results of dynamic testing show that the new method is effective.展开更多
Angular measuring system is the most important component of a servo turntable in inertial test apparatus. Its function and precision determine the turntable' s function and precision. It attaches importance to resear...Angular measuring system is the most important component of a servo turntable in inertial test apparatus. Its function and precision determine the turntable' s function and precision. It attaches importance to research on inertial test equipment. This paper introduces the principle of the angular measuring system using amplitude discrimination mode. The dynamic errors axe analyzed from the aspects of inductosyn, amplitude and function error of double-phase voltage and wavefonn distortion. Through detailed calculation, theory is provided for practical application; system errors are allocated and the angular measuring system meets the accuracy requirement. As a result, the schedule of the angular measuring system can be used in practice.展开更多
The method based on particle swarm optimization(PSO)integrated with functional link articial neural network(FLANN)for correcting dynamic characteristics of sensor is used to reduce sensor’s dynamic error caused by it...The method based on particle swarm optimization(PSO)integrated with functional link articial neural network(FLANN)for correcting dynamic characteristics of sensor is used to reduce sensor’s dynamic error caused by its system limitations.Combining the advantages of PSO and FLANN,with this method a dynamic compensator can be realized without knowing the dynamic model of the sensor.According to the input and output of the sensor and the reference model,the weights of the network trained were used to initialize one particle station of the whole particle swarm when the training of the FLANN had been finished.Then PSO algorithm was applied,and the global best particle station of the particle swarm was the parameters of the compensator.The feasibility of dynamic compensation method is tested.Simulation results from simulator of sensor show that the results after being compensated have given a good description to input signals.展开更多
A nested-model system is constructed by embedding the regional climate model RegCM3 into a general circulation model for monthly-scale regional climate forecast over East China. The systematic errors are formulated fo...A nested-model system is constructed by embedding the regional climate model RegCM3 into a general circulation model for monthly-scale regional climate forecast over East China. The systematic errors are formulated for the region on the basis of 10-yr (1991-2000) results of the nested-model system, and of the datasets of the Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) and the temperature analysis of the National Meteorological Center (NMC), U.S.A., which are then used for correcting the original forecast by the system for the period 2001-2005. After the assessment of the original and corrected forecasts for monthly precipitation and surface air temperature, it is found that the corrected forecast is apparently better than the original, suggesting that the approach can be applied for improving monthly-scale regional climate dynamical forecast.展开更多
The main factors affecting the dynamic errors of coordinate measuring machines are analyzed. It is pointed out that there are two main contributors to the dynamic errors: One is the rotation of the elements around the...The main factors affecting the dynamic errors of coordinate measuring machines are analyzed. It is pointed out that there are two main contributors to the dynamic errors: One is the rotation of the elements around the joints connected with air bearings and the other is the bending of the elements caused by the dynamic inertial forces. A method for obtaining the displacement errors at the probe position from dynamic rotational errors is presented. The dynamic rotational errors are measured with inductive position sensors and a laser interferometer. The theoretical and experimental results both show that during the process of fast probing, due to the dynamic inertial forces, there are not only large rotation of the elements around the joints connected with air bearings but also large bending of the weak elements themselves.展开更多
基金supported by the National Natural Science Foundation of China(12002370).
文摘To solve the finite-time error-tracking problem in mis-sile guidance,this paper presents a unified design approach through error dynamics and free-time convergence theory.The proposed approach is initiated by establishing a desired model for free-time convergent error dynamics,characterized by its independence from initial conditions and guidance parameters,and adjustable convergence time.This foundation facilitates the derivation of specific guidance laws that integrate constraints such as leading angle,impact angle,and impact time.The theoretical framework of this study elucidates the nuances and synergies between the proposed guidance laws and existing methodologies.Empirical evaluations through simulation comparisons underscore the enhanced accuracy and adaptability of the proposed laws.
基金Research Project Supported by Shanxi Scholarship Council of China(No.2012-068)Taiyuan Science and Technology Agency(No.120247-20)Surface-temperature Sensor Dynamic Measurement and Calibration Technology Research of National Defense Fundamental Scientific Research
文摘A new method was proposed, in which a high-power CO2 laser modulated by high frequency was used as the driv- ing source to heat up a surface-temperature sensor. The continual beam and the pulsed beam sent out by the same laser could be used in the same system to carry on the static calibration of the radiation thermometer and the dynamic calibration of the temperature sensor to be checked. The frequency-response characteristics of high-speed radiation thermometer surpassed that of the temperature sensor, therefore it could be used as the reference value to calibrate the latter and let system error be cor- rected. Differences in the environment of the sensor installing and the error caused by the change of thermo-physical proper- ty could be avoided. Thus, the difficult problem of traceable dynamic calibration of temperature was solved. In experiment, to obtain the frequency characteristics of the thermocouple and the dynamic performance of the K type thermocouple, which could compensate the dynamic characteristics of the sensor, the sensor was dynamically corrected by using the method, and then the mathematical model was established.
文摘The analysis and calculating method of dynamic errors of CMMs during probing are discussed.To relate the dynamic displacement errors with the dynamic rotational errors a method for obtaining the displacement errors at the probing position from dynamic rotational errors is presented.It is pointed out that the finite element method might be used for modeling dynamic errors.However,dynamic errors are difficult to be modeled so a combined practical and theoretical approach is needed.In addition,the dynamic errors are measured with inductive position sensors.
文摘In this paper we address the dynamics of compensation cutting process from both Laplace s frequency domain and the time domain of the first time, using the two computer aided analyzing softwares: MATLAB and SIMULINK. Theoretical analysis and simulation experiments firstly show that not only the systematical stiffness of workpiece, spindle and tools, but also the regenerated coefficient affects the compensation displacement effect. The results show that the SREC is practicable in reality to decease the spindle induced errors in many engineering applications such as hard boring through simulation and the preliminary experiment results.
文摘Aim To analyze the mathematical error model of a dynamically tuned gyro (DTG) strapdown northfinder in detail, guide the process of design, manufacture and adjustment of northfinder. Methods Each error source of this type of northfinder was determined, and the influence of each source on northfinding result was formulated. Results and Conclusion Under the guidance of the analysis, select relevant method for each source which has different effect on result to reduce northfinding error, a type of northfinder meeting the practical requirements of user was developed.
基金This study was supported by the National Key Basic Research and Development Project of China 2004CB418303 the National Natural Science foundation of China under Grant Nos. 40305012 and 40475027Jiangsu Key Laboratory of Meteorological Disaster KLME0601.
文摘This research reveals the dependency of floating point computation in nonlinear dynamical systems on machine precision and step-size by applying a multiple-precision approach in the Lorenz nonlinear equations. The paper also demoastrates the procedures for obtaining a real numerical solution in the Lorenz system with long-time integration and a new multiple-precision-based approach used to identify the maximum effective computation time (MECT) and optimal step-size (OS). In addition, the authors introduce how to analyze round-off error in a long-time integration in some typical cases of nonlinear systems and present its approximate estimate expression.
基金Projects(51605361,51505357) supported by the National Natural Science Foundation of ChinaProjects(XJS16041,JB160411) supported by the Fundamental Research Funds for the Central Universities,China
文摘A dynamic model of a helical gear rotor system is proposed.Firstly,a generally distributed dynamic model of a helical gear pair with tooth profile errors is developed.The gear mesh is represented by a pair of cylinders connected by a series of springs and the stiffness of each spring is equal to the effective mesh stiffness.Combining the gear dynamic model with the rotor-bearing system model,the gear-rotor-bearing dynamic model is developed.Then three cases are presented to analyze the dynamic responses of gear systems.The results reveal that the gear dynamic model is effective and advanced for general gear systems,narrow-faced gear,wide-faced gear and gear with tooth profile errors.Finally,the responses of an example helical gear system are also studied to demonstrate the influence of the lead crown reliefs and misalignments.The results show that both of the lead crown relief and misalignment soften the gear mesh stiffness and the responses of the gear system increase with the increasing lead crown reliefs and misalignments.
基金Project(2011CB706800) supported by the National Basic Research Program of ChinaProject(51275530) supported by the National Natural Science Foundation of China
文摘The effect of static transmission error on nonlinear dynamic response of the spiral bevel gear system combining with time-varying stiffness and backlash was investigated.Firstly,two different control equations of the spiral bevel gear model were adopted,where the static transmission error was expressed in two patterns as predesigned parabolic function and sine function of transmission errors.The dynamic response,bifurcation map,time domain response,phase curve and Poincare map were obtained by applying the explicit Runge-Kutta integration routine with variable-step.A comparative study was carried out and some profound phenomena were detected.The results show that there are many different kinds of tooth rattling phenomena at low speed.With the increase of speed,the system enters into stable motion without any rattling in the region(0.72,1.64),which indicates that the system with predesigned parabolic function of transmission error has preferable capability at high speed.
文摘The dynamic errors of gyros are the important error sources of a strapdown inertial navigation system. In order to identify the dynamic error model coefficients accurately, the static error model coefficients which lay a foundation for compensating while identifying the dynamic error model are identified in the gravity acceleration fields by using angular position function of the three-axis turntable. The angular acceleration and angular velocity are excited on the input, output and spin axis of the gyros when the outer axis and the middle axis of a three-axis turntable are in the uniform angular velocity state simultaneously, while the inner axis of the turntable is in different static angular positions. 8 groups of data are sampled when the inner axis is in 8 different angular positions. These data are the function of the middle axis positions and the inner axis positions. For these data, harmonic analysis method is applied two times versus the middle axis positions and inner axis positions respectively so that the dynamic error model coefficients are finally identified through the least square method. In the meantime the optimal angular velocity of the outer axis and the middle axis are selected by computing the determination value of the information matrix.
基金Project(51321065)supported by the Innovative Research Groups of the National Natural Science Foundation of ChinaProject(2013CB035904)supported by the National Basic Research Program of China(973 Program)Project(51439005)supported by the National Natural Science Foundation of China
文摘Accurate 3-D fracture network model for rock mass in dam foundation is of vital importance for stability,grouting and seepage analysis of dam foundation.With the aim of reducing deviation between fracture network model and measured data,a 3-D fracture network dynamic modeling method based on error analysis was proposed.Firstly,errors of four fracture volume density estimation methods(proposed by ODA,KULATILAKE,MAULDON,and SONG)and that of four fracture size estimation methods(proposed by EINSTEIN,SONG and TONON)were respectively compared,and the optimal methods were determined.Additionally,error index representing the deviation between fracture network model and measured data was established with integrated use of fractal dimension and relative absolute error(RAE).On this basis,the downhill simplex method was used to build the dynamic modeling method,which takes the minimum of error index as objective function and dynamically adjusts the fracture density and size parameters to correct the error index.Finally,the 3-D fracture network model could be obtained which meets the requirements.The proposed method was applied for 3-D fractures simulation in Miao Wei hydropower project in China for feasibility verification and the error index reduced from 2.618 to 0.337.
文摘The paper is focused on identifying error sources in computational fluid dynamics(CFD) predictions of a spray drying process. Seven groups of drying and atomisation parameters were selected for analysis and 13simulation trials were performed. The theoretical results were compared with experimental data and sensitivity of the simulation results to the analysed factors was determined. The following parameters affecting the accuracy of CFD spray modelling were found: gas turbulence model, particle dispersion, atomising air, initial parameters of atomisation and heat losses to the environment. A major difference in the errors committed during modelling of spray drying process for fine and coarse sprays was observed.
基金The paper is sponsored by National Natural Science Foundation of China(No.50675211)Natural Science Foundation(No.2009011023)Returned Overseas Graduates Foundation(No.2008067) of Shanxi Provincein China
文摘The main cause of dynamic errors is due to frequency response limitation of measurement system. One way of solving this problem is designing an effective inverse filter. Since the problem is ill-conditioned, a small uncertainty in the measurement will came large deviation in reconstncted signals. The amplified noise has to be suppressed at the sacrifice of biasing in estimation. The paper presents a kind of designing method of inverse filter in frequency domain based on stabilized solutions of Fredholm integral equations of the fast kind in order to reduce dynamic errors. Compared with previous several work, the method has advantage of generalization. Simulations with different Signal-to-Noise ratio (SNR) are investigated. Flexibility of the method is verified. Application of correcting dynamic error is given.
基金Supported by National Basic Research Program of China("973"Program,No.2013CB632305)
文摘Monte Carlo method was adopted to calculate the meshing error considering the manufacture error and assembly error of the meshing point along the time-varying contact line for helical gear pair. The flexural-torsion-axis dynamic model coupled was established under the tooth friction force and solved by the perturbation method to compute real dynamic tooth load. The change laws of the friction force and friction torque were obtained in a meshing period. The transmission error formulation was analyzed to introduce meshing excitations. The maximum dynamic transmission error, the maximum meshing force and the maximum dynamic factor were calculated under different speeds, external loads and damping factors. The conclusions can provide theoretical basis for the gear design especially in tooth profile correction.
基金supported by National Natural Science Foundation of China(No.51375125)the Foundation for Distinguished Young Scholars of Heilongjiang Province,China(No.JC201111)the Program for New Century Excellent Talents in University(No.NCET10-0146)
文摘To analyze the attitude errors of vertical docking test system of small satellite,the static error and kinematic error of test system are considered.The working principle of test system and coordinate of actuator are introduced.The model of friction torque on the joints and torque on docking mechanism are built.Dynamics equation of actuator is built by the Lagrange equation and the Nielsen equation.Under the condition of 24 different angle groups,the calculation of dynamics equation is built by using MATLAB/SIMULINK platform and the kinematic errors of actuator are obtained.The attitude error models of docking mechanism are built.Results shows that the main angle error sources of yaw,row,pitch are not identical.The attitude error of yaw angle can be decreased by compensating the angle error around xaxis.The attitude error of row angle mainly originates in the system error,and it can be eliminated by adjusting non-orthogonal degree.
文摘In the paper,a new method for the measurement of the dynamic transmission crror of preci-sion hobbing machines using only one sensor is proposed.The dynamic transmission error i ob-tained by demodulating the phase-modulated signal according to the Hilbert transform priple.The results of dynamic testing show that the new method is effective.
文摘Angular measuring system is the most important component of a servo turntable in inertial test apparatus. Its function and precision determine the turntable' s function and precision. It attaches importance to research on inertial test equipment. This paper introduces the principle of the angular measuring system using amplitude discrimination mode. The dynamic errors axe analyzed from the aspects of inductosyn, amplitude and function error of double-phase voltage and wavefonn distortion. Through detailed calculation, theory is provided for practical application; system errors are allocated and the angular measuring system meets the accuracy requirement. As a result, the schedule of the angular measuring system can be used in practice.
基金Natural Science Foundation of Shanxi Province(No.2009011023)
文摘The method based on particle swarm optimization(PSO)integrated with functional link articial neural network(FLANN)for correcting dynamic characteristics of sensor is used to reduce sensor’s dynamic error caused by its system limitations.Combining the advantages of PSO and FLANN,with this method a dynamic compensator can be realized without knowing the dynamic model of the sensor.According to the input and output of the sensor and the reference model,the weights of the network trained were used to initialize one particle station of the whole particle swarm when the training of the FLANN had been finished.Then PSO algorithm was applied,and the global best particle station of the particle swarm was the parameters of the compensator.The feasibility of dynamic compensation method is tested.Simulation results from simulator of sensor show that the results after being compensated have given a good description to input signals.
基金National Natural Science Foundation of China (40875067, 40675040)Knowledge Innovation Program of the Chinese Academy of Sciences (IAP09306)National Basic Research Program of China. (2006CB400505)
文摘A nested-model system is constructed by embedding the regional climate model RegCM3 into a general circulation model for monthly-scale regional climate forecast over East China. The systematic errors are formulated for the region on the basis of 10-yr (1991-2000) results of the nested-model system, and of the datasets of the Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) and the temperature analysis of the National Meteorological Center (NMC), U.S.A., which are then used for correcting the original forecast by the system for the period 2001-2005. After the assessment of the original and corrected forecasts for monthly precipitation and surface air temperature, it is found that the corrected forecast is apparently better than the original, suggesting that the approach can be applied for improving monthly-scale regional climate dynamical forecast.
文摘The main factors affecting the dynamic errors of coordinate measuring machines are analyzed. It is pointed out that there are two main contributors to the dynamic errors: One is the rotation of the elements around the joints connected with air bearings and the other is the bending of the elements caused by the dynamic inertial forces. A method for obtaining the displacement errors at the probe position from dynamic rotational errors is presented. The dynamic rotational errors are measured with inductive position sensors and a laser interferometer. The theoretical and experimental results both show that during the process of fast probing, due to the dynamic inertial forces, there are not only large rotation of the elements around the joints connected with air bearings but also large bending of the weak elements themselves.