期刊文献+
共找到55篇文章
< 1 2 3 >
每页显示 20 50 100
Investigation of asphaltene deposition under dynamic flow conditions 被引量:2
1
作者 Farhad Salimi Javad Salimi Mozafar Abdollahifar 《Petroleum Science》 SCIE CAS CSCD 2016年第2期340-346,共7页
Asphaltene deposition is one of the most seri- ous problems, which usually occurs in oil wells, petroleum production, oil processing, and transportation facilities. Deposition of heavy organic components, especially a... Asphaltene deposition is one of the most seri- ous problems, which usually occurs in oil wells, petroleum production, oil processing, and transportation facilities. Deposition of heavy organic components, especially asphaltene, can lead to wellbore blockage and impacts well economics due to reduction in oil production. Therefore, it is necessary to pay more attention to finding some solution to overcome this problem. In this study, a pipe-loop apparatus for investigation of oil stability was employed to measure deposition thickness using a thermal method. The effects of many factors such as oil type, oil temperature, oil velocity, inhibitors, and solvents on asphaltene deposition were investigated. The results showed that the deposition increased with the increasing value of the colloidal insta- bility index. Besides, the deposition thickness increased with the decreasing velocity of oil, but did not change with oil temperature. In addition, n-heptane could result in more deposition; however, toluene had no effect on the deposi- tion. Branched dodecyl benzene sulfonic acid (Branched DBSA) and Linear DBSA as inhibitors decreased the rate of asphaltene deposition. 展开更多
关键词 ASPHALTENE DEPOSITION dynamic flow Pipe-loops INHIBITORS
下载PDF
Dynamic Flow Control Strategies of Vehicle SCR Urea Dosing System 被引量:1
2
作者 LIN Wei ZHANG Youtong ASIF Malik 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第2期276-284,共9页
Selective Catalyst Reduction(SCR)Urea Dosing System(UDS)directly affects the system accuracy and the dynamic response performance of a vehicle.However,the UDS dynamic response is hard to keep up with the changes o... Selective Catalyst Reduction(SCR)Urea Dosing System(UDS)directly affects the system accuracy and the dynamic response performance of a vehicle.However,the UDS dynamic response is hard to keep up with the changes of the engine's operating conditions.That will lead to low NO_χconversion efficiency or NH_3 slip.In order to optimize the injection accuracy and the response speed of the UDS in dynamic conditions,an advanced control strategy based on an air-assisted volumetric UDS is presented.It covers the methods of flow compensation and switching working conditions.The strategy is authenticated on an UDS and tested in different dynamic conditions.The result shows that the control strategy discussed results in higher dynamic accuracy and faster dynamic response speed of UDS.The inject deviation range is improved from being between-8%and 10%to-4%and 2%and became more stable than before,and the dynamic response time was shortened from 200 ms to 150 ms.The ETC cycle result shows that after using the new strategy the NH_3 emission is reduced by 60%,and the NO_χemission remains almost unchanged.The trade-off between NO_χconversion efficiency and NH_3 slip is mitigated.The studied flow compensation and switching working conditions can improve the dynamic performance of the UDS significantly and make the UDS dynamic response keep up with the changes of the engine's operating conditions quickly. 展开更多
关键词 select catalyst reduction(SCR) urea dosing system(UDS) dynamic flow control strategies
下载PDF
Flow Dynamics around Two Side by Side Circular Cylinders with Alternating Movements
3
作者 Alice Rosa da Silva 《World Journal of Mechanics》 2023年第1期1-19,共19页
The flow dynamics is analyzed through two-dimensional numerical simulations around two circular cylinders arranged side by side, with 4 combinations of alternating motions. All simulations are performed for Re = 1000,... The flow dynamics is analyzed through two-dimensional numerical simulations around two circular cylinders arranged side by side, with 4 combinations of alternating motions. All simulations are performed for Re = 1000, amplitude of oscillation (A) equal to 3, frequency ratio (f<sub>r</sub>) of 0.5, specific rotation (α) equal to 0.5 and different values of spacing ratio (L/D). It is verified that the combination of the type of movement, together with the position of one cylinder in relation to the other, exerts significant influence on the flow dynamics, as well as on the pressure distribution around the cylinder surface and on the average values of the fluid dynamics coefficients. The smallest value of the average pressure coefficient (C<sub>p</sub> = -3.3), is obtained for the oscillating cylinder when placed side by side with the clockwise rotation cylinder, case 3 and L/D = 1.5. On the other hand, the lowest mean drag coefficient (C<sub>d</sub> = 1.0788), is obtained for the cylinder with counterclockwise rotation, located in the lower position in relation to oscillating cylinder in the upper position, with spacing between them of 1.5. Furthermore, it is observed that the rotation movement is more effective in reducing drag than the rotation-oscillation movement, for the studied frequency ratio. 展开更多
关键词 ROTATION Rotation-Oscillation flow dynamic Circular Cylinder
下载PDF
Development of DSP-Based Dynamic Signal Processing Module for Turbine Flowmeter
4
作者 Liu Yuan Zhang Tianhong 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2016年第5期546-551,共6页
Traditional signal processing methods for turbine flowmeter are unable to solve the contradiction between the real-time performance and the accuracy during the aeroengine bench test or hardware in the loop(HIL)simulat... Traditional signal processing methods for turbine flowmeter are unable to solve the contradiction between the real-time performance and the accuracy during the aeroengine bench test or hardware in the loop(HIL)simulation of aeroengine control system.A dynamic flow measurement method based on cycle number of the flowmeter is proposed.And a DSP-based multi-functional dynamic signal processing module for turbine flowmeter is built to validate the method.The developed system can provide three types of output modes including PWM,frequency and D/A.At the same time,the results can be displayed instantly with the module of serial communication interface to obtain dynamic flow signal with good precision.Experimental results show that the stability of flow measurement is greatly improved with precision guaranteed and the real-time response reaches the maximum limit of turbine flowmeter. 展开更多
关键词 turbine flowmeter DSP cycle-number filter dynamic flow measurement
下载PDF
Flow Dynamics of a Spiral-groove Dry-gas Seal 被引量:20
5
作者 WANG Bing ZHANG Huiqiang CAO Hongjun 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第1期78-84,共7页
The dry-gas seal has been widely used in different industries. With increased spin speed of the rotator shaft, turbulence occurs in the gas film between the stator and rotor seal faces. For the micro-scale flow in the... The dry-gas seal has been widely used in different industries. With increased spin speed of the rotator shaft, turbulence occurs in the gas film between the stator and rotor seal faces. For the micro-scale flow in the gas film and grooves, turbulence can change the pressure distribution of the gas film. Hence, the seal performance is influenced. However, turbulence effects and methods for their evaluation are not considered in the existing industrial designs of dry-gas seal. The present paper numerically obtains the turbulent flow fields of a spiral-groove dry-gas seal to analyze turbulence effects on seal performance. The direct numerical simulation (DNS) and Reynolds-averaged Navier-Stokes (RANS) methods are utilized to predict the velocity field properties in the grooves and gas film. The key performance parameter, open force, is obtained by integrating the pressure distribution, and the obtained result is in good agreement with the experimental data of other researchers. Very large velocity gradients are found in the sealing gas film because of the geometrical effects of the grooves. Considering turbulence effects, the calculation results show that both the gas film pressure and open force decrease. The RANS method underestimates the performance, compared with the DNS. The solution of the conventional Reynolds lubrication equation without turbulence effects suffers from significant calculation errors and a small application scope. The present study helps elucidate the physical mechanism of the hydrodynamic effects of grooves for improving and optimizing the industrial design or seal face pattern of a dry-gas seal. 展开更多
关键词 flow dynamics spiral-groove dry-gas seal turbulence effects direct numerical simulation (DNS) Reynolds-averaged Navier-Stokes (RANS) method Reynolds lubrication equation
下载PDF
Structural ensemble dynamics based closure model for wall-bounded turbulent flow 被引量:11
6
作者 Zhen-Su She Ning Hu You Wu State Key Laboratory for Turbulence and Complex Systems and Dept Mechanical and Aerospace Engineering,College of Engineering, Peking University,100871 Beijing, China 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2009年第5期731-736,共6页
Wall-bounded turbulent flow involves the development of multi-scale turbulent eddies, as well as a sharply varying boundary layer. Its theoretical descriptions are yet phenomenological. We present here a new framework... Wall-bounded turbulent flow involves the development of multi-scale turbulent eddies, as well as a sharply varying boundary layer. Its theoretical descriptions are yet phenomenological. We present here a new framework called structural ensemble dynamics (SED), which aims at using systematically all relevant statistical properties of turbulent structures for a quantitative description of ensemble means. A new set of closure equations based on the SED approach for a turbulent channel flow is presented. SED order functions are defined, and numerically determined from data of direct numerical simulations (DNS). Computational results show that the new closure model reproduces accurately the solution of the original Navier-Stokes simulation, including the mean velocity profile, the kinetic energy of the streamwise velocity component, and every term in the energy budget equation. It is suggested that the SED-based studies of turbulent structure builds a bridge between the studies of physical mechanisms of turbulence and the development of accurate model equations for engineering predictions. 展开更多
关键词 TURBULENCE Closure equation Channel flow Structural ensemble dynamics
下载PDF
Influence of core box vents distribution on flow dynamics of core shooting process based on experiment and numerical simulation 被引量:4
7
作者 Chang-jiang Ni Gao-chun Lu +4 位作者 Qing-dong Zhang Tao Jing Jun-jiao Wu Lin-long Yang Qin-fang Wu 《China Foundry》 SCIE 2016年第1期22-29,共8页
Core shooting process plays a decisive role in the quality of sand cores, and core box vents distribution is one of the most important factor determining the effectiveness of core shooting process. In this paper, the ... Core shooting process plays a decisive role in the quality of sand cores, and core box vents distribution is one of the most important factor determining the effectiveness of core shooting process. In this paper, the influence of core box vents distribution on the flow dynamics of core shooting process was investigated based on in situ experimental observations with transparent core box, high-speed camera and pressure measuring system. Attention was focused on the variation of both the flow behavior of sand and pressure curves due to different vents distribution. Taking both kinetic and frictional stress into account, a kinetic-frictional constitutive model was established to describe the internal momentum transfer in the solid phase. Two-fluid model(TFM) simulation was then performed and good agreement was achieved between the experimental and simulated results on both the flow behavior of sand and the pressure curves. It was found that vents distribution has direct effect on the pressure difference of different locations in the core box, which determines the buoyancy force exerting on the sand particles and significantly influences the filling process of core sand. 展开更多
关键词 vents distribution flow dynamics pressure variation core shooting process kinetic-frictional model two-fluid model
下载PDF
From molecular dynamics to lattice Boltzmann:a new approach for pore-scale modeling of multi-phase flow 被引量:4
8
作者 Xuan Liu Yong-Feng Zhu +2 位作者 Bin Gong Jia-Peng Yu Shi-Ti Cui 《Petroleum Science》 SCIE CAS CSCD 2015年第2期282-292,共11页
Most current lattice Boltzmann (LBM) models suffer from the deficiency that their parameters have to be obtained by fitting experimental results. In this paper, we propose a new method that integrates the molecular ... Most current lattice Boltzmann (LBM) models suffer from the deficiency that their parameters have to be obtained by fitting experimental results. In this paper, we propose a new method that integrates the molecular dynamics (MD) simulation and LBM to avoid such defect. The basic idea is to first construct a molecular model based on the actual components of the rock-fluid system, then to compute the interaction force between the rock and the fluid of different densities through the MD simulation. This calculated rock-fluid interaction force, combined with the fluid-fluid force determined from the equation of state, is then used in LBM modeling. Without parameter fitting, this study presents a new systematic approach for pore-scale modeling of multi-phase flow. We have validated this ap- proach by simulating a two-phase separation process and gas-liquid-solid three-phase contact angle. Based on an actual X-ray CT image of a reservoir core, we applied our workflow to calculate the absolute permeability of the core, vapor-liquid H20 relative permeability, and capillary pressure curves. 展开更多
关键词 Molecular dynamics - Lattice BoltzmannMulti-phase flow Core simulation
下载PDF
COMPUTATIONAL FLUID DYNAMICS RESEARCH ON PRESSURE LOSS OF CROSS-FLOW PERFORATED MUFFLER 被引量:14
9
作者 HU Xiaodong ZHOU Yiqi +2 位作者 FANG Jianhua MAN Xiliang ZHAO Zhengxu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第2期88-93,共6页
The pressure loss of cross-flow perforated of physical modeling, simulation and data processing. muffler has been computed with the procedure Three-dimensional computational fluid dynamics (CFD) has been used to inv... The pressure loss of cross-flow perforated of physical modeling, simulation and data processing. muffler has been computed with the procedure Three-dimensional computational fluid dynamics (CFD) has been used to investigate the relations of porosities, flow velocity and diameter of the holes with the pressure loss. Accordingly, some preliminary results have been obtained that pressure loss increases with porosity descent as nearly a hyperbolic trend, rising flow velocity of the input makes the pressure loss increasing with parabola trend, diameter of holes affects little about pressure loss of the muffler. Otherwise, the holes on the perforated pipes make the air flow gently and meanly, which decreases the air impact to the wall and pipes in the muffler. A practical perforated muffler is used to illustrate the available of this method for pressure loss computation, and the comparison shows that the computation results with the method of CFD has reference value for muffler design. 展开更多
关键词 Perforated muffler Pressure loss Computational fluid dynamics (CFD) Porosity flow velocity
下载PDF
Coupled Dynamic Modeling of Rolls Model and Metal Model for Four High Mill Based on Strip Crown Control 被引量:10
10
作者 SUN Jianliang PENG Yan LIU Hongmin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第1期144-150,共7页
The crown is a key quality index of strip and plate, the rolling mill system is a complex nonlinear system, the strip qualities are directly affected by the dynamic characteristics of the rolling mil. At present, the ... The crown is a key quality index of strip and plate, the rolling mill system is a complex nonlinear system, the strip qualities are directly affected by the dynamic characteristics of the rolling mil. At present, the studies about the dynamic modeling of the rolling mill system mainly focus on the dynamic simulation for the strip thickness control system, the dynamic characteristics of the strip along the width direction and that of the rolls along axial direction are not considered. In order to study the dynamic changes of strip crown in the roiling process, the dynamic simulation model based on strip crown control is established. The work roll and backup roll are considered as elastic continuous bodies and the work roll and backup roll are joined by a Winkler elastic layer. The rolls are considered as double freely supported beams. The change rate of roll gap is taken into consideration in the metal deformation, based on the principle of dynamic conservation of material flow, the two dimensional dynamic model of metal is established. The model of metal deformation provides exciting force for the rolls dynamic model, and the roils dynamic model and metal deformation model couple together. Then, based on the two models, the dynamic model of rolling mill system based on strip crown control is established. The Newmark-13 method is used to solve the problem, and the dynamic changes of these parameters are obtained as follows: (1) The bending of work roll and backup roll changes with time; (2) The strip crown changes with time; (3) The distribution of rolling force changes with time. Take some cold tandem rolling mill as subject investigated, simulation results and the comparisons with experimental results show that the dynamic model built is rational and correct. The proposed research provides effective theory for optimization of device and technological parameters and development of new technology, plays an important role to improve the strip control precision and strip shape quality. 展开更多
关键词 strip crown transverse vibration of rolls dynamic simulation dynamic conservation of material flow
下载PDF
Continuum modeling for two-lane traffic flow with consideration of the traffic interruption probability 被引量:2
11
作者 田川 孙棣华 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第12期51-59,共9页
Considering the effects that the probability of traffic interruption and the friction between two lanes have on the car-following behaviour, this paper establishes a new two-lane microscopic car-following model. Based... Considering the effects that the probability of traffic interruption and the friction between two lanes have on the car-following behaviour, this paper establishes a new two-lane microscopic car-following model. Based on this microscopic model, a new macroscopic model was deduced by the relevance relation of microscopic and macroscopic scale parameters for the two-lane traffic flow. Terms related to lane change are added into the continuity equations and velocity dynamic equations to investigate the lane change rate. Numerical results verify that the proposed model can be efficiently used to reflect the effect of the probability of traffic interruption on the shock, rarefaction wave and lane change behaviour on two-lane freeways. The model has also been applied in reproducing some complex traffic phenomena caused by traffic accident interruption. 展开更多
关键词 two lanes traffic interruption probability traffic flow dynamics model numerical simulation
下载PDF
Theoretical Calculations and Experimental Verification for the Pumping Effect Caused by the Dynamic Micro-tapered Angle 被引量:7
12
作者 CAI Yufei ZHANG Jianhui +2 位作者 ZHU Chunling HUANG Jun JIANG Feng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第3期615-623,共9页
The atomizer with micro cone apertures has advantages of ultra-fine atomized droplets, low power consumption and low temperature rise. The current research of this kind of atomizer mainly focuses on the performance an... The atomizer with micro cone apertures has advantages of ultra-fine atomized droplets, low power consumption and low temperature rise. The current research of this kind of atomizer mainly focuses on the performance and its application while there is less research of the principle of the atomization. Under the analysis of the dispenser and its micro-tapered aperture's deformation, the volume changes during the deformation and vibration of the micro-tapered aperture on the dispenser are calculated by coordinate transformation. Based on the characters of the flow resistance in a cone aperture, it is found that the dynamic cone angle results from periodical changes of the volume of the micro-tapered aperture of the atomizer and this change drives one-way flows. Besides, an experimental atomization platform is established to measure the atomization rates with different resonance frequencies of the cone aperture atomizer. The atomization performances of cone aperture and straight aperture atomizers are also measured. The experimental results show the existence of the pumping effect of the dynamic tapered angle. This effect is usually observed in industries that require low dispersion and micro- and nanoscale grain sizes, such as during production of high-pressure nozzles and inhalation therapy. Strategies to minimize the pumping effect of the dynamic cone angle or improve future designs are important concerns. This research proposes that dynamic micro-tapered angle is an important cause of atomization of the atomizer with micro cone apertures. 展开更多
关键词 atomization nozzle/diffuser flow dynamic cone angle piezoelectric pump
下载PDF
Applications and verification of a computational energy dynamics model for mine climate simulations 被引量:1
13
作者 G.Danko D.Bahrami C.Stewart 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2020年第4期483-493,共11页
A complete thermodynamic model is described for temperature and heat flow distribution simulation for ventilation networks in underground mines.The method is called the Computational Energy Dynamics(CED)model of the h... A complete thermodynamic model is described for temperature and heat flow distribution simulation for ventilation networks in underground mines.The method is called the Computational Energy Dynamics(CED)model of the heat,mass,and energy transport.The Thermal and Humidity(TH)transport elements of the full model are described for advection,convection,and accumulation,encompassing heat capacity,radiation,latent heat for evaporation,and condensation in the airways,as well as variable heat conduction and accumulation in the rock strata.The thermal flywheel effect for time-dependent temperature field applications is included in the model solution.A CED model validation exercise is described,directly evaluating the iterated,minimized energy balance errors for the mechanical and thermal energy components for each network branch after a converged solution is determined.A simulation example relevant to mine safety and health is shown with the CED-TH model,demonstrating its capabilities in efficiency and accuracy in comparison with measurement results. 展开更多
关键词 Mine climate simulation dynamic heat flow model Coupled heat and moisture transport Computational energy dynamics Mine safety and health
下载PDF
Analysis of dynamic wave model for flood routing in natural rivers 被引量:3
14
作者 Reza BARATI Sajjad RAHIMI Gholam Hossein AKBARI 《Water Science and Engineering》 EI CAS 2012年第3期243-258,共16页
Flooding is a common natural disaster that causes enormous economic, social, and human losses. Of various flood routing methods, the dynamic wave model is one of the best approaches for the prediction of the character... Flooding is a common natural disaster that causes enormous economic, social, and human losses. Of various flood routing methods, the dynamic wave model is one of the best approaches for the prediction of the characteristics of floods during their propagations in natural rivers because all of the terms of the momentum equation are considered in the model. However, no significant research has been conducted on how the model sensitivity affects the accuracy of the downstream hydrograph. In this study, a comprehensive analysis of the input parameters 9f the dynamic wave model was performed through field applications in natural rivers and routing experiments in artificial channels using the graphical multi-parametric sensitivity analysis (GMPSA). The results indicate that the effects of input parameter errors on the output results are more significant in special situations, such as lower values of Manning's roughness coefficient and/or a steeper bed slope on the characteristics of a design hydrograph, larger values of the skewness factor and/or time to peak on the channel characteristics, larger values of Manning's roughness coefficient and/or the bed slope on the space step, and lower values of Manning's roughness coefficient and/or a steeper bed slope on the time step and weighting factor. 展开更多
关键词 open channel flow flood wave dynamic wave model flood routing numericalexperiments sensitivity analysis
下载PDF
Molecular tagging techniques and their applications to the study of complex thermal flow phenomena1,211 被引量:5
15
作者 Fang Chen Haixing Li Hui Hu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2015年第4期425-445,共21页
This review article reports the recent progress in the development of a new group of molecule-based flow diagnostic techniques, which include molecular tag- ging velocimetry (MTV) and molecular tagging thermometry ... This review article reports the recent progress in the development of a new group of molecule-based flow diagnostic techniques, which include molecular tag- ging velocimetry (MTV) and molecular tagging thermometry (MTT), for both qualitative flow visualization of thermally induced flow structures and quantitative whole-field mea- surements of flow velocity and temperature distributions. The MTV and MTT techniques can also be easily combined to result in a so-called molecular tagging velocimetry and ther- mometry (MTV&T) technique, which is capble of achieving simultaneous measurements of flow velocity and temperature distribution in fluid flows. Instead of using tiny particles, the molecular tagging techniques (MTV, MTT, and MTV&T) use phosphorescent molecules, which can be turned into long-lasting glowing marks upon excitation by photons of appropriate wavelength, as the tracers for the flow veloc- ity and temperature measurements. The unique attraction and implementation of the molecular tagging techniques are demonstrated by three application examples, which include: (1) to quantify the unsteady heat transfer process from a heated cylinder to the surrounding fluid flow in order to exam- ine the thermal effects on the wake instabilities behind the heated cylinder operating in mixed and forced heat convec- tion regimes, (2) to reveal the time evolution of unsteady heat transfer and phase changing process inside micro-sized, icing water droplets in order to elucidate the underlying physics pertinent to aircraft icing phenomena, and (3) to achievesimultaneous droplet size, velocity and temperature measure- ments of "in-flight" droplets to characterize the dynamic and thermodynamic behaviors of flying droplets in spray flows. 展开更多
关键词 Molecular tagging velocimetry Molecular tagging thermometry Wake instabilities behindthe heated cylinder Aircraft icing Icing physics of waterdroplets dynamics and thermodynamics of flying dropletsin spray flows
下载PDF
Microfluidic-based single cell trapping using a combination of stagnation point flow and physical barrier 被引量:2
16
作者 Miao Yu Zongzheng Chen +3 位作者 Cheng Xiang Bo Liu Handi Xie Kairong Qin 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2016年第3期422-429,共8页
Single cell trapping in vitro by microfluidic device is an emerging approach for the study of the relationship between single cells and their dynamic biochemical microenvironments. In this paper, a hydrodynamic-based ... Single cell trapping in vitro by microfluidic device is an emerging approach for the study of the relationship between single cells and their dynamic biochemical microenvironments. In this paper, a hydrodynamic-based microfluidic device for single cell trapping is designed using a combination of stagnation point flow and physical barrier.The microfluidic device overcomes the weakness of the traditional ones, which have been only based upon either stagnation point flows or physical barriers, and can conveniently load dynamic biochemical signals to the trapped cell. In addition, it can connect with a programmable syringe pump and a microscope to constitute an integrated experimental system.It is experimentally verified that the microfluidic system can trap single cells in vitro even under flow disturbance and conveniently load biochemical signals to the trapped cell. The designed micro-device would provide a simple yet effective experimental platform for further study of the interactions between single cells and their microenvironments. 展开更多
关键词 Single cell trapping Microfluidics Stagnation point flow Physical barrier Hydrodynamic tweezers dynamic biochemical signal
下载PDF
Numerical modelling of flow and transport in rough fractures 被引量:2
17
作者 Scott Briggs Bryan W.Karney Brent E.Sleep 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2014年第6期535-545,共11页
Simulation of flow and transport through rough walled rock fractures is investigated using the latticeBoltzmann method (LBM) and random walk (RW), respectively. The numerical implementation isdeveloped and validat... Simulation of flow and transport through rough walled rock fractures is investigated using the latticeBoltzmann method (LBM) and random walk (RW), respectively. The numerical implementation isdeveloped and validated on general purpose graphic processing units (GPGPUs). Both the LBM and RWmethod are well suited to parallel implementation on GPGPUs because they require only next-neighbourcommunication and thus can reduce expenses. The LBM model is an order of magnitude faster onGPGPUs than published results for LBM simulations run on modern CPUs. The fluid model is verified forparallel plate flow, backward facing step and single fracture flow; and the RWmodel is verified for pointsourcediffusion, Taylor-Aris dispersion and breakthrough behaviour in a single fracture. Both algorithmsplace limitations on the discrete displacement of fluid or particle transport per time step to minimise thenumerical error that must be considered during implementation. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved. 展开更多
关键词 Hydrogeology Fracture flow Solute transport Computational fluid dynamics Lattice Boltzmann method(LBM) Random walk(RW)
下载PDF
Three-stage approach for dynamic traffic temporal-spatial model
18
作者 陆化普 孙智源 屈闻聪 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第10期2728-2734,共7页
In order to describe the characteristics of dynamic traffic flow and improve the robustness of its multiple applications, a dynamic traffic temporal-spatial model(DTTS) is established. With consideration of the tempor... In order to describe the characteristics of dynamic traffic flow and improve the robustness of its multiple applications, a dynamic traffic temporal-spatial model(DTTS) is established. With consideration of the temporal correlation, spatial correlation and historical correlation, a basic DTTS model is built. And a three-stage approach is put forward for the simplification and calibration of the basic DTTS model. Through critical sections pre-selection and critical time pre-selection, the first stage reduces the variable number of the basic DTTS model. In the second stage, variable coefficient calibration is implemented based on basic model simplification and stepwise regression analysis. Aimed at dynamic noise estimation, the characteristics of noise are summarized and an extreme learning machine is presented in the third stage. A case study based on a real-world road network in Beijing, China, is carried out to test the efficiency and applicability of proposed DTTS model and the three-stage approach. 展开更多
关键词 dynamic traffic flow temporal-spatial model big-data driven
下载PDF
NUMERICAL SIMULATION BY COMPUTATIONAL FLUID DYNAMICS AND EXPERIMENTAL STUDY ON STIRRED BIOREACTOR WITH PUNCHED IMPELLER 被引量:1
19
作者 WANG Yu HE Pingting +1 位作者 YE Hong XIN Zhihong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第5期42-45,共4页
Instantaneous flow field and temperature field of the two-phase fluid are measured by particle image velocimetry (PIV) and steady state method during the state of onflow. A turbulent two-phase fluid model of stirred... Instantaneous flow field and temperature field of the two-phase fluid are measured by particle image velocimetry (PIV) and steady state method during the state of onflow. A turbulent two-phase fluid model of stirred bioreactor with punched impeller is established by the computational fluid dynamics (CFD), using a rotating coordinate system and sliding mesh to describe the relative motion between impeller and baffles. The simulation and experiment results of flow and temperature field prove their warps are less than 10% and the mathematic model can well simulate the fields, which will also provide the study on optimized-design and scale-up of bioreactors with reference value. 展开更多
关键词 Stirred bioreactor with punched impeller Computational fluid dynamics(CFD)Particle image velocimetry(PIV) flow field Temperature field
下载PDF
新一代运载火箭发射燃气动力学数值模拟
20
作者 CHEN Jinsong HE Jianhua +2 位作者 JIA Yankui ZHANG Guodong TIAN Qingya 《Aerospace China》 2023年第2期21-31,共11页
By using the mesh resolution control method based on the nozzle scale,a paralleled super numerical simulation and high-quality mesh model of the launch jet dynamics for new-generation launch vehicles was developed.Bas... By using the mesh resolution control method based on the nozzle scale,a paralleled super numerical simulation and high-quality mesh model of the launch jet dynamics for new-generation launch vehicles was developed.Based upon this,a transient numerical simulation method,combining the pressure and velocity,tightly coupled algorithm and SST turbulence model,was used to complete the unsteady numerical simulation of the launch jet dynamics of the new-generation launch vehicles.The numerical simulation results of the launch jet dynamics,for the new-generation launch vehicles,demonstrated that despite the complex structure of the launch platform,the jet flows of the core stage and booster engines were generally smoothly channeled into the double deflecting trench through the launch platform’s diversion hole at the initial stage of ignition.After the lift off,the jet flows of the core stage and the booster engines began to affect and ablate the grillage-shaped beam and the adjoined surface of the launch platform adjacent to the booster engines.At a higher altitude after lift off,it could be seen for the new-generation launch vehicles the ablation range of high temperature and high-speed jet flows on the launch platform further expanded,which would have a severe ablation effect on the fuel filling tower near the booster engines and even all the support arms.The numerical simulation of launch jet dynamics also established that the jet flows embers at the bottom of the core stage rocket body continued to be affected for an extended period of time due to the large number of nozzles in the new-generation launch vehicles engine and the weak suction effect of the jet flows in the core-stage engines. 展开更多
关键词 numerical simulation of launch jet dynamics jet flows field mesh model dynamic distribution of jet flows field numerical simulation check new-generation launch vehicles
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部