期刊文献+
共找到3,595篇文章
< 1 2 180 >
每页显示 20 50 100
Stability and accuracy of central difference method for real-time dynamic substructure testing considering mass participation coefficient
1
作者 Zheng Lichang Xu Guoshan +3 位作者 Yang Ge Wang Zhen Yang Kaibo Zheng Zhenyun 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第3期625-636,共12页
For real-time dynamic substructure testing(RTDST),the influence of the inertia force of fluid specimens on the stability and accuracy of the integration algorithms has never been investigated.Therefore,this study prop... For real-time dynamic substructure testing(RTDST),the influence of the inertia force of fluid specimens on the stability and accuracy of the integration algorithms has never been investigated.Therefore,this study proposes to investigate the stability and accuracy of the central difference method(CDM)for RTDST considering the specimen mass participation coefficient.First,the theory of the CDM for RTDST is presented.Next,the stability and accuracy of the CDM for RTDST considering the specimen mass participation coefficient are investigated.Finally,numerical simulations and experimental tests are conducted for verifying the effectiveness of the method.The study indicates that the stability of the algorithm is affected by the mass participation coefficient of the specimen,and the stability limit first increases and then decreases as the mass participation coefficient increases.In most cases,the mass participation coefficient will increase the stability limit of the algorithm,but in specific circumstances,the algorithm may lose its stability.The stability and accuracy of the CDM considering the mass participation coefficient are verified by numerical simulations and experimental tests on a three-story frame structure with a tuned liquid damper. 展开更多
关键词 real-time dynamic substructure testing central difference method STABILITY mass participation coefficient tuned liquid damper
下载PDF
Design of Ocean Floating Structures:Prediction of Hydrodynamic Coefficients
2
作者 LI Wei FAN Shaotao +1 位作者 WANG Jinxi LIU Tianhui 《南方能源建设》 2024年第6期18-32,共15页
[Introduction] Accurate calculation of the hydrodynamic coefficients for floating structures and the investigation of the flow field distribution around floating bodies on the marine free surface are essential for imp... [Introduction] Accurate calculation of the hydrodynamic coefficients for floating structures and the investigation of the flow field distribution around floating bodies on the marine free surface are essential for improving the engineering design and application of marine structures.[Method] This study utilized the computational fluid dynamics(CFD) approach and the Reynolds Averaged NavierStokes(RANS) method and considered the effects of viscosity and free surface interactions on the hydrodynamic behavior of floating structures.By employing the dynamic mesh technique,this study simulated the periodic movements of simplified three-dimensional(3D)shapes:spheres,cylinders,and cubes,which were representative of complex marine structures.The volume of fluid(VOF) method was leveraged to accurately track the nonlinear behavior of the free surface.In this analysis,the added mass and damping coefficients for the fundamental modes of motion(surge,heave,and roll) were calculated across a spectrum of frequencies,facilitating the fast determination of hydrodynamic forces and moments exerted on floating structures.[Result] The results of this study are not only consistent with the results of the 3D potential flow theory but also further reflect the role of viscosity.This method can be used for precise calculation of the hydrodynamic coefficients of floating structures and for describing the flow field of such structures in motion on a free surface.[Conclusion] The methodology presented goes beyond the traditional potential flow approach. 展开更多
关键词 Computational fluid dynamics ocean floating structures hydrodynamic coefficients fluid-structure interaction
下载PDF
Molecular Dynamics, Diffusion Coefficients and Activation Energy of the Electrolyte (Anode) in Lithium (Li and Li+), Sodium (Na and Na+) and Potassium (K and K+)
3
作者 Alain Second Dzabana Honguelet Timothée Nsongo +1 位作者 Bitho Rodongo Earvin Loumbandzila 《Modeling and Numerical Simulation of Material Science》 2024年第1期39-57,共19页
This work is a simulation modelling with the LAMMPS calculation code of an electrode based on alkali metals (lithium, sodium and potassium) using the MEAM potential. For different multiplicities, two models were studi... This work is a simulation modelling with the LAMMPS calculation code of an electrode based on alkali metals (lithium, sodium and potassium) using the MEAM potential. For different multiplicities, two models were studied;with and without gap. In this work, we present the structural, physical and chemical properties of the lithium, sodium and potassium electrodes. For the structural properties, the cohesive energy and the mesh parameters were calculated, revealing that, whatever the chemical element selected, the compact hexagonal hcp structure is the most stable, followed by the face-centred cubic CFC structure, and finally the BCC structure. The most stable structure is lithium, with a cohesion energy of -6570 eV, and the lowest bcc-hcp transition energy of -0.553 eV/atom, followed by sodium. For physical properties, kinetic and potential energies were calculated for each of the sectioned chemical elements, with lithium achieving the highest value. Finally, for the chemical properties, we studied the diffusion coefficient and the activation energy. Only potassium followed an opposite order to the other two, with the quantities with lacunae being greater than those without lacunae, whatever the multiplicity. The order of magnitude of the diffusion coefficients is given by the relationship D<sub>Li</sub> > D<sub>Na</sub> > D<sub>k</sub> for the multiplicity 6*6*6, while for the activation energy the order is reversed. 展开更多
关键词 Molecular dynamics Diffusion coefficients Activation Energy LITHIUM Alkali Metals MEAM Potential
下载PDF
Assessment of Operational Performance in a Power Generation/Selling Integrated Company Using a Dynamic Proportional Adjustment Coefficient
4
作者 Jingbin Wu Hongming Yang Sheng Xiang 《Energy Engineering》 EI 2024年第11期3263-3287,共25页
Currently,the operational performance assessment system in the power market primarily focuses on power generation and electricity retail companies,lacking a system tailored to the operational characteristics of power ... Currently,the operational performance assessment system in the power market primarily focuses on power generation and electricity retail companies,lacking a system tailored to the operational characteristics of power generation/selling integrated companies.Therefore,this article proposes an assessment index system for assessing the operational performance of a power generation/selling integrated company,encompassing three dimensions:basic capacity,development potential,and external environment.A dynamic proportional adjustment coefficient is designed,along with a subjective and objective weighting model for assessment indexes based on a combined weightingmethod.Subsequently,the operational performance of an integrated company is assessed using extension theory.The results in the case study demonstrate the feasibility and effectiveness of the proposed dynamic proportional adjustment coefficient. 展开更多
关键词 Power generation/selling integrated company dynamic proportional adjustment coefficient combined weighting extension theory assessment of operational performance
下载PDF
Molecular Dynamics, Physical Properties, Diffusion Coefficients and Activation Energy of the Lithium Oxide (Li-O) and Sodium Oxide (Na-O) Electrolyte (Cathode)
5
作者 Alain Second Dzabana Honguelet Abel Dominique Eboungabeka Timothée Nsongo 《Advances in Materials Physics and Chemistry》 CAS 2024年第9期213-234,共22页
This work is a simulation model with the LAMMPS calculation code of an electrode based on alkali metal oxides (lithium, sodium and potassium) using the Lennard Jones potential. For a multiplicity of 8*8*8, we studied ... This work is a simulation model with the LAMMPS calculation code of an electrode based on alkali metal oxides (lithium, sodium and potassium) using the Lennard Jones potential. For a multiplicity of 8*8*8, we studied a gap-free model using molecular dynamics. Physical quantities such as volume and pressure of the Na-O and Li-O systems exhibit similar behaviors around the thermodynamic ensembles NPT and NVE. However, for the Na2O system, at a minimum temperature value, we observe a range of total energy values;in contrast, for the Li2O system, a minimum energy corresponds to a range of temperatures. Finally, for physicochemical properties, we studied the diffusion coefficient and activation energy of lithium and potassium oxides around their melting temperatures. The order of magnitude of the diffusion coefficients is given by the relation Dli-O >DNa-O for the multiplicity 8*8*8, while for the activation energy, the order is well reversed EaNa-O > EaLi-O. 展开更多
关键词 Molecular dynamics Diffusion coefficients Activation Energy Lithium Oxide Sodium Oxide Lennard Jones Potential Data File Atomic and Charge Models CATHODE LAMMPS
下载PDF
Thermomechanical Dynamics (TMD) and Bifurcation-Integration Solutions in Nonlinear Differential Equations with Time-Dependent Coefficients
6
作者 Hiroshi Uechi Lisa Uechi Schun T. Uechi 《Journal of Applied Mathematics and Physics》 2024年第5期1733-1743,共11页
The new independent solutions of the nonlinear differential equation with time-dependent coefficients (NDE-TC) are discussed, for the first time, by employing experimental device called a drinking bird whose simple ba... The new independent solutions of the nonlinear differential equation with time-dependent coefficients (NDE-TC) are discussed, for the first time, by employing experimental device called a drinking bird whose simple back-and-forth motion develops into water drinking motion. The solution to a drinking bird equation of motion manifests itself the transition from thermodynamic equilibrium to nonequilibrium irreversible states. The independent solution signifying a nonequilibrium thermal state seems to be constructed as if two independent bifurcation solutions are synthesized, and so, the solution is tentatively termed as the bifurcation-integration solution. The bifurcation-integration solution expresses the transition from mechanical and thermodynamic equilibrium to a nonequilibrium irreversible state, which is explicitly shown by the nonlinear differential equation with time-dependent coefficients (NDE-TC). The analysis established a new theoretical approach to nonequilibrium irreversible states, thermomechanical dynamics (TMD). The TMD method enables one to obtain thermodynamically consistent and time-dependent progresses of thermodynamic quantities, by employing the bifurcation-integration solutions of NDE-TC. We hope that the basic properties of bifurcation-integration solutions will be studied and investigated further in mathematics, physics, chemistry and nonlinear sciences in general. 展开更多
关键词 The Nonlinear Differential Equation with Time-Dependent coefficients The Bifurcation-Integration Solution Nonequilibrium Irreversible States Thermomechanical dynamics (TMD)
下载PDF
Hierarchical Bayesian Calibration and On-line Updating Method for Influence Coefficient of Automatic Dynamic Balancing Machine 被引量:7
7
作者 ZHANG Jian WU Jianwei MA Zhiyong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第6期876-882,共7页
Measurement error of unbalance's vibration response plays a crucial role in calibration and on-line updating of influence coefficient(IC). Focusing on the two problems that the moment estimator of data used in cali... Measurement error of unbalance's vibration response plays a crucial role in calibration and on-line updating of influence coefficient(IC). Focusing on the two problems that the moment estimator of data used in calibration process cannot fulfill the accuracy requirement under small sample and the disturbance of measurement error cannot be effectively suppressed in updating process, an IC calibration and on-line updating method based on hierarchical Bayesian method for automatic dynamic balancing machine was proposed. During calibration process, for the repeatedly-measured data obtained from experiments with different trial weights, according to the fact that measurement error of each sensor had the same statistical characteristics, the joint posterior distribution model for the true values of the vibration response under all trial weights and measurement error was established. During the updating process, information obtained from calibration was regarded as prior information, which was utilized to update the posterior distribution of IC combined with the real-time reference information to implement online updating. Moreover, Gibbs sampling method of Markov Chain Monte Carlo(MCMC) was adopted to obtain the maximum posterior estimation of parameters to be estimated. On the independent developed dynamic balancing testbed, prediction was carried out for multiple groups of data through the proposed method and the traditional method respectively, the result indicated that estimator of influence coefficient obtained through the proposed method had higher accuracy; the proposed updating method more effectively guaranteed the measurement accuracy during the whole producing process, and meantime more reasonably compromised between the sensitivity of IC change and suppression of randomness of vibration response. 展开更多
关键词 influence coefficient hierarchical Bayesian calibration online updating dynamic balancing Markov Chain Monte Carlo(MCMC)
下载PDF
Critical anomaly and finite size scaling of the self-diffusion coefficient for Lennard Jones fluids by non-equilibrium molecular dynamic simulation 被引量:4
8
作者 Ahmed Asad 吴江涛 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第10期362-367,共6页
We use non-equilibrium molecular dynamics simulations to calculate the self-diffusion coefficient, D, of a Lennard Jones fluid over a wide density and temperature range. The change in self-diffusion coefficient with t... We use non-equilibrium molecular dynamics simulations to calculate the self-diffusion coefficient, D, of a Lennard Jones fluid over a wide density and temperature range. The change in self-diffusion coefficient with temperature decreases by increasing density. For density ρ* = ρσ3 = 0.84 we observe a peak at the value of the self-diffusion coefficient and the critical temperature T* = kT/ε = 1.25. The value of the self-diffusion coefficient strongly depends on system size. The data of the self-diffusion coefficient are fitted to a simple analytic relation based on hydrodynamic arguments. This correction scales as N-α, where α is an adjustable parameter and N is the number of particles. It is observed that the values of a 〈 1 provide quite a good correction to the simulation data. The system size dependence is very strong for lower densities, but it is not as strong for higher densities. The self-diffusion coefficient calculated with non-equilibrium molecular dynamic simulations at different temperatures and densities is in good agreement with other calculations fronl the literature. 展开更多
关键词 self-diffusion coefficient non-equilibrium molecular dynamic simulation Lennard Jonesfluid critical dynamics
下载PDF
Tomography of the dynamic stress coefficient for stress wave prediction in sedimentary rock layer under the mining additional stress 被引量:7
9
作者 Wenlong Shen Guocang Shi +3 位作者 Yungang Wang Jianbiao Bai Ruifeng Zhang Xiangyu Wang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2021年第4期653-663,共11页
In this study,the tomography of dynamic stress coefficient(TDSC)was established based on a mechanical model of stress wave propagation in bedding planes and a mathematical model of the stress wave attenuation in rock ... In this study,the tomography of dynamic stress coefficient(TDSC)was established based on a mechanical model of stress wave propagation in bedding planes and a mathematical model of the stress wave attenuation in rock masses.The reliability of the TDSC was verified by a linear bedding plane model and field monitoring.Generally,the TDSC in the dynamic stress propagation of bedding planes increases with the following conditions:(1)the increase of the normal stiffness of the bedding plane,(2)the increase of the incident angle of the stress wave,(3)the decrease of the incident frequency of the stress wave,or(4)the growth of three ratios(the ratios of rock densities,elastic moduli,and the Poisson’s ratios)of rocks on either side of bedding planes.The additional stress weakens TDSC linearly and slowly during the stress wave propagation in bedding planes,and the weakening effect increases with the growth of the three ratios.Besides,the TDSC decreases exponentially in the rock mass as propagation distance increases.In a field case,the TDSC decreases significantly as vertical and horizontal distances increase and its wave range increases as vertical distance increases in the sedimentary rock layers. 展开更多
关键词 Tomography of the dynamic stress coefficient Stress wave attenuation Mining additional stress Sedimentary rock layer
下载PDF
Determination of Water Diffusion Coefficients and Dynamics in Adhesive/Carbon Fiber Reinforced Epoxy Resin Composite Joints 被引量:3
10
作者 WANG Chao WANG zhi +1 位作者 WANG Jing SU Tao 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2007年第4期474-478,共5页
To determinate the water diffusion coefficients and dynamics in adhesive/carben fiber reinforced epoxy resin composite joints, energy dispersive X-ray spectroscopy analysis(EDX) is used to establish the content chan... To determinate the water diffusion coefficients and dynamics in adhesive/carben fiber reinforced epoxy resin composite joints, energy dispersive X-ray spectroscopy analysis(EDX) is used to establish the content change of oxy- gen in the adhesive in adhesive/carbon fther reinforced epoxy resin composite joints. As water is made up of oxygen and hydrogen, the water diffusion coefficients and dynamics in adhesive/carben fiber reinforced epoxy resin composite joints can be obtained from the change in the content of oxygen in the adhesive during humidity aging, via EDX analy-sis. The authors have calculated the water diffusion coefficients and dynamics in the adhesive/carbon fiber reinforced epoxy resin composite joints with the aid of beth energy dispersive X-ray spectroscopy and elemental analysis. The de- termined results with EDX analysis are almost the same as those determined with elemental analysis and the results al- so show that the durability of the adhesive/carbon fther reinforced epoxy resin composite joints subjected to silane cou- pling agent treatment is better than those subjected to sand paper burnishing treatment and chemical oxidation treat- ment. 展开更多
关键词 Diffusion coefficient dynamicS Energy dispersive X-ray spectroscopy Elemental analysis Adhesive/ carbon fiber reinforced epoxy resin composites joint
下载PDF
Molecular dynamics simulation of self-diffusion coefficients for liquid metals 被引量:1
11
作者 巨圆圆 张庆明 +1 位作者 龚自正 姬广富 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第8期365-368,共4页
The temperature-dependent coefficients of self-diffusion for liquid metals are simulated by molecular dynamics meth ods based on the embedded-atom-method (EAM) potential function. The simulated results show that a g... The temperature-dependent coefficients of self-diffusion for liquid metals are simulated by molecular dynamics meth ods based on the embedded-atom-method (EAM) potential function. The simulated results show that a good inverse linear relation exists between the natural logarithm of self-diffusion coefficients and temperature, though the results in the litera ture vary somewhat, due to the employment of different potential functions. The estimated activation energy of liquid metals obtained by fitting the Arrhenius formula is close to the experimental data. The temperature-dependent shear-viscosities obtained from the Stokes-Einstein relation in conjunction with the results of molecular dynamics simulation are generally consistent with other values in the literature. 展开更多
关键词 molecular dynamics self-diffusion coefficients shear-viscosity liquid metals
下载PDF
Influence of Structural Parameters of Turbocharger Floating Bearing on Its Dynamic Characteristic Coefficients 被引量:1
12
作者 Junsheng Zhao Yuantong Gu +1 位作者 Shengxian Yi Xuelong Lu 《Journal of Beijing Institute of Technology》 EI CAS 2017年第2期183-190,共8页
The structure parameters in an actual industrial production have a great influence on the coefficient of supercharger floating bearing dynamic characteristics,but there has been little systematic study so far.In this ... The structure parameters in an actual industrial production have a great influence on the coefficient of supercharger floating bearing dynamic characteristics,but there has been little systematic study so far.In this paper,the influence of structural parameters of the turbocharger floating bearing on its dynamic characteristic coefficientsis systematically investigated based on the theories of hydrodynamic lubrication and tribology.The influence of clearance ratio on eccentricity and the influence of internal to external radius ratios,and Sommerfeld number were analyzed.A new formula of responding characteristics of the oil film force caused by the displacement or velocity disturbance was deduced near an equilibrium in the steady state.Applying the newly developed formula,the dynamic characteristic was studied for floating bearings.Regularity for change of oil film stiffness and damping was analyzed with the structural parameters of floating bearing such as radius ratios and eccentricity.It has been found that the clearance ratio increases with eccentricity when the radius ratio is unchanged.The eccentricity decreases with the internal to external radius ratio of floating rings when the clearance ratio is constant.The absolute value of total principal stiffness and total main damping decrease with the clearance ratio and radius ratio of floating rings when the total cross damping is stable.The results and findings in this paper can contribute to nonlinear dynamics designs of turbocharger rotor-bearing systems. 展开更多
关键词 TURBOCHARGER floating bearing structure parameters dynamic characteristic coefficient
下载PDF
Rate Coefficients of Roaming Reaction H+MgH Using Ring Polymer Molecular Dynamics 被引量:1
13
作者 Hui Yang Wen-bin Fan +2 位作者 Jun-hua Fang Jianing Song Yongle Li 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2021年第2期149-156,I0001,共9页
The ring-polymer molecular dynamics(RPMD)was used to calculate the thermal rate coefficients of the multi-channel roaming reaction H+MgH→Mg+H_(2).Two reaction channels,tight and roaming,are explicitly considered.This... The ring-polymer molecular dynamics(RPMD)was used to calculate the thermal rate coefficients of the multi-channel roaming reaction H+MgH→Mg+H_(2).Two reaction channels,tight and roaming,are explicitly considered.This is a pioneering attempt of exerting RPMD method to multichannel reactions.With the help of a newly developed optimization-interpolation protocol for preparing the initial structures and adaptive protocol for choosing the force constants,we have successfully obtained the thermal rate coefficients.The results are consistent with those from other theoretical methods,such as variational transition state theory and quantum dynamics.Especially,RPMD results exhibit negative temperature dependence,which is similar to the results from variational transition state theory but different from the ones from ground state quantum dynamics calculations. 展开更多
关键词 Ring-polymer molecular dynamics Semiclassical dynamics Multi-channel reaction Roaming reaction Reaction rate coefficient
下载PDF
Dynamic model of saturator based on a global heat and mass transfer coefficient 被引量:1
14
作者 黄地 周登极 +2 位作者 张会生 苏明 翁史烈 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第5期1173-1181,共9页
Saturator is one of the core components of humid air turbine (HAT) and is the main feature of HAT making it different from other gas turbine cycles. Due to the lack of sufficient experience in commercial plant opera... Saturator is one of the core components of humid air turbine (HAT) and is the main feature of HAT making it different from other gas turbine cycles. Due to the lack of sufficient experience in commercial plant operation, HAT cycle has a great demand for modeling and simulation of the system and its components, especially the saturator, to provide reference for system design and optimization. The conventional saturator models are usually based on the theory of heat and mass transfer, which need two accurate coefficients to ensure convincing results. This work proposes a global heat and mass transfer coefficient based on cooling tower technology to model the saturator in small-scale HAT cycle. Compared with the experimental data, the simulation results show that the proposed model well predicts the dynamic humidity and temperature distribution characteristics of saturator at low air pressure and temperature. 展开更多
关键词 SATURATOR cooling tower technology global coefficient dynamic modeling
下载PDF
Identification Method of Dynamic Coefficients of Fluid Film Bearings for HDD Spindle Motors 被引量:1
15
作者 Masayuki Ochiai Yuta Sunami Hiromu Hashimoto 《Journal of Mechanics Engineering and Automation》 2014年第2期123-129,共7页
Fluid film bearings are widely used as support elements of rotating shaft for HDD (hard disk drive) spindle motors. Recently, the opportunity for the HDD spindle motors exposed to external vibration has been increas... Fluid film bearings are widely used as support elements of rotating shaft for HDD (hard disk drive) spindle motors. Recently, the opportunity for the HDD spindle motors exposed to external vibration has been increasing because the HDDs are used for various information related equipments such as mobile PCs, car navigation systems. Hence, the rotating shaft has a possibility to come in contact with the bearing and it causes wear or seizure to the bearing surface. In order to avoid the problems, it is extremely important to enhance the dynamic characteristics of the fluid film bearings for spindles. However, verification from both theory and experiment of dynamic characteristics such as spring coefficients and damping coefficients is rare and few. In this paper, the bearing vibration characteristics when the HDD spindle is oscillated are investigated theoretically and experimentally. And then the identification method ofoil film coefficients of fluid film bearing spindles is described. 展开更多
关键词 TRIBOLOGY fluid film bearing hard disk drive spindle motor dynamic coefficient VIBRATION identification.
下载PDF
Dynamic Characteristics of Planar Deployable Structure Based on ScissorLike Element Using Influence Coefficient Method
16
作者 Jianfeng Li Sanmin Wang +2 位作者 Changjian Zhi Bo Li Qi'an Peng 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2017年第5期53-60,共8页
In order to execute geometric analysis for planar deployable mechanism of scissors unit,the dynamic analysis model of scissor planar deployable structure is created based on the Cartesian coordinate system,the influen... In order to execute geometric analysis for planar deployable mechanism of scissors unit,the dynamic analysis model of scissor planar deployable structure is created based on the Cartesian coordinate system,the influence coefficient is acquired by means of the coordinate transformation,combining the D 'Alembert 's principle with Dynamic-Static method,the dynamic characteristic analysis is completed finally. Moreover,specific calculating examples are adopted to verify the effectiveness of proposed method,and the result shows that the movement of each component of scissors unit mechanism is more smooth during initial deployment stage,however,when the configuration angle θ of unit mechanism is approaching π,some comparative large variations would appear on movement parameters and hinge constraint force. 展开更多
关键词 dynamic characteristics DEPLOYABLE structure influence coefficient method CARTESIAN COORDINATE dynamic model
下载PDF
DETERMINATION OF STATIC AND DYNAMIC DIFFUSION COEFFICIENTS OF MOISTURE IN PARTICLEBOARDS
17
作者 Dai Fangtian Cai LipinNortheast Forestry UniversityZhang ShufenWeihe Forestry Bureau, Heilongjiang Province 《Journal of Northeast Forestry University》 SCIE CAS CSCD 1993年第2期87-92,共6页
The static and dynamic diffusion coefficients are important coefficients to describe the moisture transfer processes in particleboard. In this paper, the formula of culculating the static and dynamic diffusion coeffic... The static and dynamic diffusion coefficients are important coefficients to describe the moisture transfer processes in particleboard. In this paper, the formula of culculating the static and dynamic diffusion coefficients were deduced. At first, the static diffusion coefficients of four kinds of particleboards were determined by using diffusion cup method. The results demonstrated that the static diffusion coefficients parallel to panel surface were 10-20 times as large as that of perpendicular to panel surface for test boards. To determine both dynamic diffusion coefficients and surface emission coefficients of moisture in particleboards in one experimental period, specimens in four different thicknesses of each kind of particleboard were used in the experiment. Then the method of regression was used and the dynamic diffusion coefficients and surface emission coefficients were determined based on the slope and intercept of the regressive line. 展开更多
关键词 Static diffusion coefficient dynamic diffusion coefficient Moisture transfer
下载PDF
The Application of Ridge Regression in Dynamic Balancing of Flexible Rotors Based on Influence Coefficient Method
18
作者 秦鹏 蔡萍 +1 位作者 胡庆翰 李英霞 《Journal of Shanghai Jiaotong university(Science)》 EI 2006年第1期93-98,共6页
Based on the model structure of the influence coefficient method analyzed in depth by matrix theory ,it is explained the reason why the unreasonable and instable correction masses with bigger MSE are obtained by LS in... Based on the model structure of the influence coefficient method analyzed in depth by matrix theory ,it is explained the reason why the unreasonable and instable correction masses with bigger MSE are obtained by LS influence coefficient method when there are correlation planes in the dynamic balancing. It also presencd the new ridge regression method for solving correction masses according to the Tikhonov regularization theory, and described the reason why the ridge regression can eliminate the disadvantage of the LS method. Applying this new method to dynamic balancing of gas turbine, it is found that this method is superior to the LS method when influence coefficient matrix is ill-conditioned,the minimal correction masses and residual vibration are obtained in the dynamic balancing of rotors. 展开更多
关键词 dynamic balancin ridge regression influence coefficient least squares method
下载PDF
RELATION BETWEEN DYNAMIC LOSS MODULUS AND DIFFUSION COEFFICIENT IN A MODIFIED PET FIBER
19
作者 于建明 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 1994年第4期366-371,共6页
The mobility of polymer chain segments is shown to play a major role in the diffusion ofdisperse dyes in a copolymerization modified PET system, monoepoxy compoundCH_3 (CH_3),OCH_2CH--CH_2 modified PET. The rate of dy... The mobility of polymer chain segments is shown to play a major role in the diffusion ofdisperse dyes in a copolymerization modified PET system, monoepoxy compoundCH_3 (CH_3),OCH_2CH--CH_2 modified PET. The rate of dye diffusion (diffusion coefficient D) hasbeen related to the time-dependent mechanical property, dynamic loss modulus E', which iscontrolled by the mobility of chain segments. In this modified copolyester system, the variance ofamount of modifier in the copolyester fibers causes the change in disperse dye diffusion coefficientto fiber, and in the dynamic loss modulus of the fibers, but the relationship between the diffusionand the dynamic loss modulus is in agreement with the theoretical relation derived by Bell andDumbleton. The relation obtained in this paper is:Ln D=-2. 28Ln E'+26. 81 展开更多
关键词 dynamic loss modulus E″ Dyeing diffusion coefficient D Modified PET fiber
下载PDF
Translocation of Polymer Through a Nanopore Studied by Langevin Dynamics:Effect of the Friction Coefficient
20
作者 冯剑 尚亚卓 +2 位作者 周丽绘 刘洪来 胡英 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2012年第2期231-238,共8页
The driven polymer translocation through a nanopore with unbiased initial configuration has been studied by using Langevin dynamics(LD) simulations.It is found that the scaling relationship between translocation time ... The driven polymer translocation through a nanopore with unbiased initial configuration has been studied by using Langevin dynamics(LD) simulations.It is found that the scaling relationship between translocation time and the polymer chain length is strongly affected by the friction coefficient in LD and the driving force.However,there is no scaling relationship between the translocation time and the friction coefficient.The translocation time is almost inversely proportional to the driving force,which is in agreement with those obtained in biased translocation.The scaling relationship between gyration radius(R g) of subchain at the trans side with the subchain length(L) is R g ~L 0.33 that is in good agreement with the limiting value for molten globule state,while the curve of R g of subchain at the cis side has two distinct stages.During translocation,the subchain at the cis side is being stretched gradually,and the structure of the subchain transforms from sphere-like to rod-like.When the effect of stretching reaches the tail end,the subchain is at the most stretched state.Finally the subchain will rapidly restore to coil structure.According to the results of force analysis,the retarding force at the trans side is more crucial during the practical translocation. 展开更多
关键词 TRANSLOCATION Langevin dynamics friction coefficient POLYMER NANOPORE
下载PDF
上一页 1 2 180 下一页 到第
使用帮助 返回顶部