Based on the structural characteristics of the high-speed loading tester,a four-point bending test device was designed to carry out the four-point bending strength test of glass under the action of static load and dif...Based on the structural characteristics of the high-speed loading tester,a four-point bending test device was designed to carry out the four-point bending strength test of glass under the action of static load and different impact velocities,and the formulae for calculating the maximum dynamic stress and strain rate of glass specimens under the action of impact loads were derived.The experimental results show that the bending strength values of the glass under dynamic impact loading are all higher than those under static loading.With the increase of impact speed,the bending strength value of glass specimens generally tends to increase,and the bending strength value increases more obviously when the impact speed exceeds 0.5 m/s or higher.By increasing the impact velocity,higher tensile strain rate of glass specimens can be obtained because the load action time becomes shorter.The bending strength of the glass material increases with its tensile strain rate,and when the tensile strain rate is between 0 and 2 s^(-1),the bending strength of the glass specimen grows more obviously with the strain rate,indicating that the glass bending strength is particularly sensitive to the tensile strain rate in this interval.As the strain rate increases,the number of cracks formed after glass breakage increases significantly,thus requiring more energy to drive the crack formation and expansion,and showing the strain rate effect of bending strength at the macroscopic level.The results of the study can provide a reference for the load bearing and structural design of glass materials under dynamic loading.展开更多
Objective The occurrence of chickenpox in rapidly developing areas poses substantial seasonal risk to children.However,certain factors influencing local chickenpox outbreaks have not been studied.Here,we examined the ...Objective The occurrence of chickenpox in rapidly developing areas poses substantial seasonal risk to children.However,certain factors influencing local chickenpox outbreaks have not been studied.Here,we examined the relationship between spatial clustering,heterogeneity of chickenpox outbreaks,and socioeconomic factors in Southern China.Methods We assessed chickenpox outbreak data from Southern China between 2006 and 2021,comprising both relatively fast-growing parts and slower sub-regions,and provides a representative sample of many developing regions.We analyzed the spatial clustering attributes associated with chickenpox outbreaks using Moran’s I and local indicators of spatial association and quantified their socioeconomic determinants using Geodetector q statistics.Results There were significant spatial heterogeneity in the risk of chickenpox outbreaks,with strong correlations between chickenpox risk and various factors,particularly demographics and living environment.Furthermore,interactive effects among specific are factors,such as population density and per capita residential building area,percentage of households with toilets,percentage of rental housing,exhibited q statistics of 0.28,0.25,and 0.24,respectively.Conclusion This study provides valuable insights into the spatial dynamics of chickenpox outbreaks in rapidly developing regions,revealing the socioeconomic factors affecting disease transmission.These implications extend the formulation of effective public health strategies and interventions to prevent and control chickenpox outbreaks in similar global contexts.展开更多
The dramatic temperature-dependence of liquids dynamics has attracted considerable scientific interests and efforts in the past decades, but the physics of which remains elusive. In addition to temperature, some other...The dramatic temperature-dependence of liquids dynamics has attracted considerable scientific interests and efforts in the past decades, but the physics of which remains elusive. In addition to temperature, some other parameters, such as pressure, loading and size, can also tune the liquid dynamics and induce glass transition, which makes the situation more complicated. Here, we performed molecular dynamics simulations for Ni_(50)Zr_(50) bulk liquid and nanodroplet to study the dynamics evolution in the complex multivariate phase space, especially along the isotherm with the change of pressure or droplet size. It is found that the short-time Debye–Waller factor universally determines the long-time relaxation dynamics no matter how the temperature, pressure or size changes. The basic correlation even holds at the local atomic scale. This finding provides general understanding of the microscopic mechanism of dynamic arrest and dynamic heterogeneity.展开更多
Stress waves affect the stress field at the crack tip and dominate the dynamic crack propagation.Therefore,evaluating the influence of blasting stress waves on the crack propagation behavior and the mechanical charact...Stress waves affect the stress field at the crack tip and dominate the dynamic crack propagation.Therefore,evaluating the influence of blasting stress waves on the crack propagation behavior and the mechanical characteristics of crack propagation is of great significance for engineering blasting.In this study,ANSYS/LS-DYNA was used for blasting numerical simulation,in which the propagation characteristics of blasting stress waves and stress field distribution at the crack tip were closely observed.Moreover,ABAQUS was applied for simulating the crack propagation path and calculating dynamic stress intensity factors(DSIFs).The universal function was calculated by the fractalmethod.The results show that:the compressive wave causes the crack to close and the reflected tensile wave drives the crack to initiate and propagate,and failure mode is mainly tensile failure.The crack propagation velocity varies with time,which increases at first and then decreases,and the crack arrest occurs due to the attenuation of stress waves and dissipation of the blasting energy.In addition,crack arrest toughness is smaller than the crack initiation toughness,applied pressure waveforms(such as the peak pressure,duration,waveforms,wavelengths and loading rates)have a great influence on DSIFs.It is conducive to our deep understanding or the study of blasting stress waves dominated fracture,suggesting a broad reference for the further development of rock blasting in engineering practice.展开更多
This work presents a novel approach to the dynamic response analysis of a Euler-Bernoulli beam resting on a Winkler soil model and subjected to an impact loading.The approach considers that damping has much less impor...This work presents a novel approach to the dynamic response analysis of a Euler-Bernoulli beam resting on a Winkler soil model and subjected to an impact loading.The approach considers that damping has much less importance in controlling the maximum response to impulsive loadings because the maximum response is reached in a very short time,before the damping forces can dissipate a significant portion of the energy input into the system.The development of two sine series solutions,relating to different types of impulsive loadings,one involving a single concentrated force and the other a distributed line load,are presented.This study revealed that when a simply supported Euler-Bernoulli beam,resting on a Winkler soil model,is subject to an impact load,the resulting vertical displacements,bending moments and shear forces produced along the span of the beam are considerably affected.In particular,the quantification of this effect is best observed,relative to the corresponding static solution,via an amplification factor.The computed impact amplification factors,for the sub-grade moduli used in this study,were in magnitude greater than 2,thus confirming the multiple-degree-of-freedom nature of the problem.展开更多
In this paper,the dynamic propagation problem of a mixed-mode crack was studied by means of the experimental method of caustics.The initial curve and caustic equations were derived un- der the mixed-mode dynamic condi...In this paper,the dynamic propagation problem of a mixed-mode crack was studied by means of the experimental method of caustics.The initial curve and caustic equations were derived un- der the mixed-mode dynamic condition.A multi-point measurement method for determining the dy- namic stress intensity factors,K_Ⅰ~d and K_Ⅱ~d,and the position of the crack tip was developed.Several other methods were adopted to check this method,and showed that it has a good precision.Finally, the dynamic propagating process of a mixed-mode crack in a three-point bending beam specimen was investigated with our method.展开更多
This paper focuses on the dynamic variation of groundwater level in Lhasacity. According to the data, the obvious characteristic of the groundwater level of the city is thatit is changing seasonally. Lhasa is divided ...This paper focuses on the dynamic variation of groundwater level in Lhasacity. According to the data, the obvious characteristic of the groundwater level of the city is thatit is changing seasonally. Lhasa is divided into three districts according to hydrogeologicalconditions: the alluvial plain of the Lhasa-river, the alluvial plain of the Doilung-river, and thealluvial fan of inter mountain, which presents a downward trend, a slight upward trend and basicallystabilizing trend over the years individually. The analysis indicates that meteorological andhydrological factors lead to the obvious dynamic change of the groundwater level. However, more andmore human activities and over-exploitation of the groundwater cause the downward trend inthegroundwater level.展开更多
Fractional differential constitutive relationships are introduced to depict the history of dynamic stress inten- sity factors (DSIFs) for a semi-infinite crack in infinite viscoelastic material subjected to anti-pla...Fractional differential constitutive relationships are introduced to depict the history of dynamic stress inten- sity factors (DSIFs) for a semi-infinite crack in infinite viscoelastic material subjected to anti-plane shear impact load. The basic equations which govern the anti-plane deformation behavior are converted to a fractional wave-like equation. By utilizing Laplace and Fourier integral transforms, the fractional wave-like equation is cast into an ordinary differential equation (ODE). The unknown function in the solution of ODE is obtained by applying Fourier transform directly to the boundary conditions of fractional wave-like equation in Laplace domain instead of solving dual integral equations. Analytical solutions of DSIFs in Laplace domain are derived by Wiener-Hopf technique and the numerical solutions of DSIFs in time domain are obtained by Talbot algorithm. The effects of four parameters α, β, b1, b2 of the fractional dif- ferential constitutive model on DSIFs are discussed. The numerical results show that the present fractional differential constitutive model can well describe the behavior of DSIFs of anti-plane fracture in viscoelastic materials, and the model is also compatible with solutions of DSIFs of anti-plane fracture in elastic materials.展开更多
BACKGROUND: Mechanical ventilation is a double-edged sword to acute respiratory distress syndrome (ARDS) including lung injury, and systemic inflammatory response high tidal volumes are thought to increase mortalit...BACKGROUND: Mechanical ventilation is a double-edged sword to acute respiratory distress syndrome (ARDS) including lung injury, and systemic inflammatory response high tidal volumes are thought to increase mortality. The objective of this study is to evaluate the effects of dynamic ventilatory factors on ventilator induced lung injury in a dog model of ARDS induced by hydrochloric acid instillation under volume controlled ventilation and to investigate the relationship between the dynamic factors and ventilator-induced lung injuries (VILI) and to explore its potential mechanisms.METHODS: Thirty-six healthy dogs were randomly divided into a control group and an experimental group. Subjects in the experimental group were then further divided into four groups by different inspiratory stages of flow. Two mL of alveolar fluid was aspirated for detection of IL-8 and TNF-α. Lung tissue specimens were also extracted for total RNA, IL-8 by western blot and observed under an electronic microscope.RESULTS: IL-8 protein expression was significantly higher in group B than in groups A and D. Although the IL-8 protein expression was decreased in group C compared with group B, the difference was not statistically significant. The TNF-a ray degree of group B was significantly higher than that in the other groups (P〈0.01), especially in group C (P〉0.05). The alveolar volume of subjects in group B was significantly smaller, and cavity infiltration and cell autolysis were marked with a significant thicker alveolar septa, disorder of interval structures, and blurring of collagenous and elastic fiber structures. A large number of necrotic debris tissue was observed in group B.CONCLUSION: Mechanical ventilation with a large tidal volume, a high inspiratory flow and a high ventilation frequency can cause significant damage to lung tissue structure. It can significantly increase the expression of TNF-α and IL-8 as well as their mRNA expression. Furthermore, the results of our study showed that small tidal ventilation significantly reduces the release of proinflammatory media. This finding suggests that greater deterioration in lung injury during ARDS is associated with high inspiratory flow and high ventilation rate.展开更多
It is well-known that the responses of a structure are different when subjected to a static load or a sudden step load.The dynamic amplification factor(DAF),which is defined as the ratio of the amplitude of the vibrat...It is well-known that the responses of a structure are different when subjected to a static load or a sudden step load.The dynamic amplification factor(DAF),which is defined as the ratio of the amplitude of the vibratory response to the static response,is normally used to depict the dynamic effect.For a single-degree-of-freedom system(SDOF)subjected to a sudden dynamic load,the maximum value of DAF is 2.Many design guidelines therefore use 2 as an upper bound to consider the dynamic effect.For a civil engineering structure,which is normally a multiple-degrees-of-freedom(MDOF)system,the DAF may exceed 2 in certain circumstances.The adoption of 2 as the upper bond as suggested by the design guidelines therefore may lead to unsafe structural design.Very limited studies systematically investigate the DAF of a MDOF sysCorrespondence to:Bi Kaiming,Centre for Infrastructure Monitoring and Protection,School of Civil and Mechanical Engineering,Curtin University,Kent Street,Bentley WA 6102,Australia Tel:(+61)892665139 E-mail:kaiming.bi@curtin.edu.autem.This study theoretically investigates the DAF of a MDOF system when it is subjected to a step load based on the fundamental theory of structural dynamics.The condition on which the DAF may exceed 2 is defined.Two numerical examples and one experimental study of a cable-stayed bridge subjected to sudden cable loss are presented to illustrate the problem.展开更多
The supply-side reform is an important measure for the high-quality development of China's economy in the new era. The purpose of this paper is to explore the mechanism and influence of technological progress,huma...The supply-side reform is an important measure for the high-quality development of China's economy in the new era. The purpose of this paper is to explore the mechanism and influence of technological progress,human capital,consumption demand,resource endowment and government intervention on the adjustment and upgrading of industrial structure,and to deepen the understanding of supply-side reform.展开更多
A dynamic weight function method is presented for dynamic stress intensity factors of circular disk with a radial edge crack under external impulsive pressure. The dynamic stresses in a circular disk are solved under ...A dynamic weight function method is presented for dynamic stress intensity factors of circular disk with a radial edge crack under external impulsive pressure. The dynamic stresses in a circular disk are solved under abrupt step external pressure using the eigenfunction method. The solution consists of a quasi-static solution satisfying inhomogeneous boundary conditions and a dynamic solution satisfying homogeneous boundary conditions. By making use of Fourier- Bessel series expansion, the history and distribution of dynamic stresses in the circular disk are derived. Furthermore, the equation for stress intensity factors under uniform pressure is used as the reference case, the weight function equation for the circular disk containing an edge crack is worked out, and the dynamic stress intensity factor equation for the circular disk containing a radial edge crack can be given. The results indicate that the stress intensity factors under sudden step external pressure vary periodically with time, and the ratio of the maximum value of dynamic stress intensity factors to the corresponding static value is about 2.0.展开更多
Dynamic stress intensity factors are evaluated for thick-walled cylinder with a radial edge crack under internal impulsive pressure. Firstly, the equation for stress intensity factors under static uniform pressure is ...Dynamic stress intensity factors are evaluated for thick-walled cylinder with a radial edge crack under internal impulsive pressure. Firstly, the equation for stress intensity factors under static uniform pressure is used as the reference case, and then the weight function for a thick-walled cylinder containing a radial edge crack can be worked out. Secondly, the dynamic stresses in uncracked thick-walled cylinders are solved under internal impulsive pressure by using mode shape function method. The solution consists of a quasi-static solution satisfying inhomogeneous boundary conditions and a dynamic solution satisfying homogeneous boundary condi- tions, and the history and distribution of dynamic stresses in thick-walled cylinders are derived in terms of Fourier-Bessel series. Finally, the dynamic stress intensity factor equations for thick-walled cylinder containing a radial edge crack sub- jected to internal impulsive pressure are given by dynamic weight function method. The finite element method is utilized to verify the results of numerical examples, showing the validity and feasibility of the proposed method.展开更多
CO_(2)huff and puff experiments of different injection parameters,production parameters and soaking time were carried out on large-scale cubic and long columnar outcrop samples to analyze dynamic characteristics and i...CO_(2)huff and puff experiments of different injection parameters,production parameters and soaking time were carried out on large-scale cubic and long columnar outcrop samples to analyze dynamic characteristics and influencing factors of CO_(2)huff and puff and the contribution of sweeping mode to recovery.The experimental results show that the development process of CO_(2)huff and puff can be divided into four stages,namely,CO_(2)backflow,production of gas with some oil,high-speed oil production,and oil production rate decline stages.The production of gas with some oil stage is dominated by free gas displacement,and the high-speed oil production stage is dominated by dissolved gas displacement.CO_(2)injection volume and development speed are the major factors affecting the oil recovery.The larger the injected CO_(2)volume and the lower the development speed,the higher the oil recovery will be.The reasonable CO_(2)injection volume and development speed should be worked out according to oilfield demand and economic evaluation.There is a reasonable soaking time in CO_(2)huff and puff.Longer soaking time than the optimum time makes little contribution to oil recovery.In field applications,the stability of bottom hole pressure is important to judge whether the soaking time is sufficient during the huff period.The oil recovery of CO_(2)huff and puff mainly comes from the contribution of flow sweep and diffusion sweep,and diffusion sweep contributes more to the oil recovery when the soaking time is sufficient.展开更多
The granular dynamic shear strength is the same as that of the static one in nature, as found from numerous experiments and investigations. The shear strength is equal to the sum of the internal frictional force and t...The granular dynamic shear strength is the same as that of the static one in nature, as found from numerous experiments and investigations. The shear strength is equal to the sum of the internal frictional force and the cohesive force. The influences of type, shape, size distribution, pore ratio, moisture content and variation of vibration velocity on the dynamic shear strength of granules were studied. Based on numerous vibration shear experiments, the authors investigate the mechanism of dynamic shear strength in granules in terms of the fundamental principle and the relevant theory of modern tribology.展开更多
In high-altitude cold areas,freeze-thaw(F-T)cycles induced by day-night and seasonal temperature changes cause numerous rock mass slope engineering disasters.To investigate the dynamic properties of rock in the natura...In high-altitude cold areas,freeze-thaw(F-T)cycles induced by day-night and seasonal temperature changes cause numerous rock mass slope engineering disasters.To investigate the dynamic properties of rock in the natural environment of a high-altitude cold area,standard specimens were drilled from the slope of the Jiama copper mine in Tibet,and dynamic compression tests were performed on watersaturated and frozen sandstone with different numbers of F-T cycles(0,10,20,30,and 40)by the split Hopkinson pressure bar(SHPB)system with a cryogenic control system.The influence of water-saturated and frozen conditions on the dynamic performance of sandstone was investigated.The following conclusions are drawn:(1)With increasing strain rate,the attenuation factor(la)of water-saturated sandstone and the intensifying factor(li)of frozen sandstone linearly increase.As the number of F-T cycles increases,the dependence factor(ld)of water-saturated sandstone linearly decreases,whereas the ld of frozen sandstone linearly increases.(2)The prediction equation of the dynamic compressive strength of water-saturated and frozen sandstone is obtained,which can be used to predict the dynamic compressive strength of sandstone after various F-T cycles based on the strain rate.(3)The mesoscopic mechanism of water-saturated and frozen sandstone’s dynamic compressive strength evolution is investigated.The water softening effect causes the dynamic compressive strength of water-saturated sandstone to decrease,whereas the strengthening effect of pore ice causes it to increase.(4)The decrease in the relative dynamic compressive strength of water-saturated sandstone and the increase in the relative dynamic compressive strength of frozen sandstone can be attributed to the increased porosity.展开更多
We investigate how three-body interactions affect the elementary excitations and dynamic structure factor of a Bose- Einstein condensate trapped in a one-dimensional optical lattice. To this end, we numerically solve ...We investigate how three-body interactions affect the elementary excitations and dynamic structure factor of a Bose- Einstein condensate trapped in a one-dimensional optical lattice. To this end, we numerically solve the Gross-Pitaevskii equation and then the corresponding Bogoliubov equations. Our results show that three-body interactions can change both the Bogoliubov band structure and the dynamical structure factor dramatically, especially in the case of the two-body interaction being relatively small. Furthermore, when the optical lattice is strong enough, the analytical results, combined with the sum-rule approach, help us to understand that: the effects of three-body interactions on the static structure Ihctor can be significantly amplified by an optical lattice. Our predictions should be observable within the current Bragg spectroscopy experiment.展开更多
A new formula is obtained to calculate dynamic stress intensity factors of the three-point bending specimen containing a single edge crack in this study. Firstly, the weight function for three-point bending specimen c...A new formula is obtained to calculate dynamic stress intensity factors of the three-point bending specimen containing a single edge crack in this study. Firstly, the weight function for three-point bending specimen containing a single edge crack is derived from a general weight function form and two reference stress intensity factors, the coefficients of the weight function are given. Secondly, the history and distribution of dynamic stresses in uncracked three-point bending specimen are derived based on the vibration theory. Finally~ the dynamic stress intensity factors equations for three-pointing specimen with a single edge crack subjected to impact loadings are obtained by the weight function method. The obtained formula is verified by the comparison with the numerical results of the finite element method (FEM). Good agreements have been achieved. The law of dynamic stress intensity factors of the three-point bending specimen under impact loadings varing with crack depths and loading rates is studied.展开更多
Dynamic capacity increase in high voltage electric power transmission line is currently the most economical method for solving electric power transmission bottleneck nowadays. DS18B20 temperature sensor is applied to ...Dynamic capacity increase in high voltage electric power transmission line is currently the most economical method for solving electric power transmission bottleneck nowadays. DS18B20 temperature sensor is applied to the dynamic capacity increase of high voltage transmission lines to measure the conductor temperature and ambient temperature. The paper is focused on the experiment of DS18B20 both in the laboratory and outside. From the result of the lab temperature measurement data analysis, using 4 DS18B20’s is the most suitable plan, considering both accuracy and economical efficiency. In the experiment outside, we get four groups of conductor (uncharged) temperature and four groups of ambient temperature. The data proved that DS18B20 has good stability, and small measurement error. It is suitable for measuring the temperature of conductor and ambient in dynamic capacity increase, and helpful to improve the accuracy of the calculation of capacity increasing.展开更多
The dynamic characteristics and influencing factors of groundwater level in Qianyang County were analyzed.The results showed that in the south bank of the Qianhe River,the change of groundwater level was mainly affect...The dynamic characteristics and influencing factors of groundwater level in Qianyang County were analyzed.The results showed that in the south bank of the Qianhe River,the change of groundwater level was mainly affected by precipitation,and the response of the groundwater level to the change of precipitation was one year later.The groundwater level presented a downward trend on the whole.In the north bank of the Qianhe River,the supply source of the groundwater level included precipitation and hydrology,and the groundwater level showed a rising trend on the whole.In the plain area,there was a sudden change in the groundwater level under the control of human activities.In a word,the main factors influencing the groundwater level in various geological conditions were different,so there were great differences between various regions in the dynamic characteristics of the groundwater level in Qianyang County.展开更多
基金Found by the National Natural Science Foundation of China(Nos.52072356 and 52032011)the Shandong Province Science and Technology Small and Medium-sized Enterprises Innovation Ability Improvement Project(No.2022TSGC1194)。
文摘Based on the structural characteristics of the high-speed loading tester,a four-point bending test device was designed to carry out the four-point bending strength test of glass under the action of static load and different impact velocities,and the formulae for calculating the maximum dynamic stress and strain rate of glass specimens under the action of impact loads were derived.The experimental results show that the bending strength values of the glass under dynamic impact loading are all higher than those under static loading.With the increase of impact speed,the bending strength value of glass specimens generally tends to increase,and the bending strength value increases more obviously when the impact speed exceeds 0.5 m/s or higher.By increasing the impact velocity,higher tensile strain rate of glass specimens can be obtained because the load action time becomes shorter.The bending strength of the glass material increases with its tensile strain rate,and when the tensile strain rate is between 0 and 2 s^(-1),the bending strength of the glass specimen grows more obviously with the strain rate,indicating that the glass bending strength is particularly sensitive to the tensile strain rate in this interval.As the strain rate increases,the number of cracks formed after glass breakage increases significantly,thus requiring more energy to drive the crack formation and expansion,and showing the strain rate effect of bending strength at the macroscopic level.The results of the study can provide a reference for the load bearing and structural design of glass materials under dynamic loading.
基金supported by the Natural Science Foundation of Henan Province(242300421361)National Science Foundation of China(42371223,41901331)Innovation Project of LREIS(O88RA205YA,O88RA200YA).
文摘Objective The occurrence of chickenpox in rapidly developing areas poses substantial seasonal risk to children.However,certain factors influencing local chickenpox outbreaks have not been studied.Here,we examined the relationship between spatial clustering,heterogeneity of chickenpox outbreaks,and socioeconomic factors in Southern China.Methods We assessed chickenpox outbreak data from Southern China between 2006 and 2021,comprising both relatively fast-growing parts and slower sub-regions,and provides a representative sample of many developing regions.We analyzed the spatial clustering attributes associated with chickenpox outbreaks using Moran’s I and local indicators of spatial association and quantified their socioeconomic determinants using Geodetector q statistics.Results There were significant spatial heterogeneity in the risk of chickenpox outbreaks,with strong correlations between chickenpox risk and various factors,particularly demographics and living environment.Furthermore,interactive effects among specific are factors,such as population density and per capita residential building area,percentage of households with toilets,percentage of rental housing,exhibited q statistics of 0.28,0.25,and 0.24,respectively.Conclusion This study provides valuable insights into the spatial dynamics of chickenpox outbreaks in rapidly developing regions,revealing the socioeconomic factors affecting disease transmission.These implications extend the formulation of effective public health strategies and interventions to prevent and control chickenpox outbreaks in similar global contexts.
基金Project supported by the National Natural Science Foundation of China (Grant No.52031016)。
文摘The dramatic temperature-dependence of liquids dynamics has attracted considerable scientific interests and efforts in the past decades, but the physics of which remains elusive. In addition to temperature, some other parameters, such as pressure, loading and size, can also tune the liquid dynamics and induce glass transition, which makes the situation more complicated. Here, we performed molecular dynamics simulations for Ni_(50)Zr_(50) bulk liquid and nanodroplet to study the dynamics evolution in the complex multivariate phase space, especially along the isotherm with the change of pressure or droplet size. It is found that the short-time Debye–Waller factor universally determines the long-time relaxation dynamics no matter how the temperature, pressure or size changes. The basic correlation even holds at the local atomic scale. This finding provides general understanding of the microscopic mechanism of dynamic arrest and dynamic heterogeneity.
基金This researchwas supported by the National Natural Science Foundation of China(No.52227805)the Fundamental Research Funds for Central Universities(No.2022JCCXLJ01).Awards were granted to the author Liyun Yang.
文摘Stress waves affect the stress field at the crack tip and dominate the dynamic crack propagation.Therefore,evaluating the influence of blasting stress waves on the crack propagation behavior and the mechanical characteristics of crack propagation is of great significance for engineering blasting.In this study,ANSYS/LS-DYNA was used for blasting numerical simulation,in which the propagation characteristics of blasting stress waves and stress field distribution at the crack tip were closely observed.Moreover,ABAQUS was applied for simulating the crack propagation path and calculating dynamic stress intensity factors(DSIFs).The universal function was calculated by the fractalmethod.The results show that:the compressive wave causes the crack to close and the reflected tensile wave drives the crack to initiate and propagate,and failure mode is mainly tensile failure.The crack propagation velocity varies with time,which increases at first and then decreases,and the crack arrest occurs due to the attenuation of stress waves and dissipation of the blasting energy.In addition,crack arrest toughness is smaller than the crack initiation toughness,applied pressure waveforms(such as the peak pressure,duration,waveforms,wavelengths and loading rates)have a great influence on DSIFs.It is conducive to our deep understanding or the study of blasting stress waves dominated fracture,suggesting a broad reference for the further development of rock blasting in engineering practice.
基金l’UniversitéLaval for the financial support of his sabbatical year at Dipartimento di Bioscienze e Territorio,Universitàdegli Studi del Molise in Campobasso,Italy。
文摘This work presents a novel approach to the dynamic response analysis of a Euler-Bernoulli beam resting on a Winkler soil model and subjected to an impact loading.The approach considers that damping has much less importance in controlling the maximum response to impulsive loadings because the maximum response is reached in a very short time,before the damping forces can dissipate a significant portion of the energy input into the system.The development of two sine series solutions,relating to different types of impulsive loadings,one involving a single concentrated force and the other a distributed line load,are presented.This study revealed that when a simply supported Euler-Bernoulli beam,resting on a Winkler soil model,is subject to an impact load,the resulting vertical displacements,bending moments and shear forces produced along the span of the beam are considerably affected.In particular,the quantification of this effect is best observed,relative to the corresponding static solution,via an amplification factor.The computed impact amplification factors,for the sub-grade moduli used in this study,were in magnitude greater than 2,thus confirming the multiple-degree-of-freedom nature of the problem.
文摘In this paper,the dynamic propagation problem of a mixed-mode crack was studied by means of the experimental method of caustics.The initial curve and caustic equations were derived un- der the mixed-mode dynamic condition.A multi-point measurement method for determining the dy- namic stress intensity factors,K_Ⅰ~d and K_Ⅱ~d,and the position of the crack tip was developed.Several other methods were adopted to check this method,and showed that it has a good precision.Finally, the dynamic propagating process of a mixed-mode crack in a three-point bending beam specimen was investigated with our method.
文摘This paper focuses on the dynamic variation of groundwater level in Lhasacity. According to the data, the obvious characteristic of the groundwater level of the city is thatit is changing seasonally. Lhasa is divided into three districts according to hydrogeologicalconditions: the alluvial plain of the Lhasa-river, the alluvial plain of the Doilung-river, and thealluvial fan of inter mountain, which presents a downward trend, a slight upward trend and basicallystabilizing trend over the years individually. The analysis indicates that meteorological andhydrological factors lead to the obvious dynamic change of the groundwater level. However, more andmore human activities and over-exploitation of the groundwater cause the downward trend inthegroundwater level.
基金supported by the National Natural Science Foundation of China(11072060)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Fractional differential constitutive relationships are introduced to depict the history of dynamic stress inten- sity factors (DSIFs) for a semi-infinite crack in infinite viscoelastic material subjected to anti-plane shear impact load. The basic equations which govern the anti-plane deformation behavior are converted to a fractional wave-like equation. By utilizing Laplace and Fourier integral transforms, the fractional wave-like equation is cast into an ordinary differential equation (ODE). The unknown function in the solution of ODE is obtained by applying Fourier transform directly to the boundary conditions of fractional wave-like equation in Laplace domain instead of solving dual integral equations. Analytical solutions of DSIFs in Laplace domain are derived by Wiener-Hopf technique and the numerical solutions of DSIFs in time domain are obtained by Talbot algorithm. The effects of four parameters α, β, b1, b2 of the fractional dif- ferential constitutive model on DSIFs are discussed. The numerical results show that the present fractional differential constitutive model can well describe the behavior of DSIFs of anti-plane fracture in viscoelastic materials, and the model is also compatible with solutions of DSIFs of anti-plane fracture in elastic materials.
基金supported by grants from the Shanghai Health Bureau issues(2007102)
文摘BACKGROUND: Mechanical ventilation is a double-edged sword to acute respiratory distress syndrome (ARDS) including lung injury, and systemic inflammatory response high tidal volumes are thought to increase mortality. The objective of this study is to evaluate the effects of dynamic ventilatory factors on ventilator induced lung injury in a dog model of ARDS induced by hydrochloric acid instillation under volume controlled ventilation and to investigate the relationship between the dynamic factors and ventilator-induced lung injuries (VILI) and to explore its potential mechanisms.METHODS: Thirty-six healthy dogs were randomly divided into a control group and an experimental group. Subjects in the experimental group were then further divided into four groups by different inspiratory stages of flow. Two mL of alveolar fluid was aspirated for detection of IL-8 and TNF-α. Lung tissue specimens were also extracted for total RNA, IL-8 by western blot and observed under an electronic microscope.RESULTS: IL-8 protein expression was significantly higher in group B than in groups A and D. Although the IL-8 protein expression was decreased in group C compared with group B, the difference was not statistically significant. The TNF-a ray degree of group B was significantly higher than that in the other groups (P〈0.01), especially in group C (P〉0.05). The alveolar volume of subjects in group B was significantly smaller, and cavity infiltration and cell autolysis were marked with a significant thicker alveolar septa, disorder of interval structures, and blurring of collagenous and elastic fiber structures. A large number of necrotic debris tissue was observed in group B.CONCLUSION: Mechanical ventilation with a large tidal volume, a high inspiratory flow and a high ventilation frequency can cause significant damage to lung tissue structure. It can significantly increase the expression of TNF-α and IL-8 as well as their mRNA expression. Furthermore, the results of our study showed that small tidal ventilation significantly reduces the release of proinflammatory media. This finding suggests that greater deterioration in lung injury during ARDS is associated with high inspiratory flow and high ventilation rate.
基金National Science Foundation of China(NSFC)under Grant No.51508102,China Postdoctoral Science Foundation under Grant No.2018M631292the Beijing Postdoctoral Science Foundation under Grant No.2018-ZZ-032Financial support was also provided by the China Scholarship Council(CSC)under Grant No.201406655012。
文摘It is well-known that the responses of a structure are different when subjected to a static load or a sudden step load.The dynamic amplification factor(DAF),which is defined as the ratio of the amplitude of the vibratory response to the static response,is normally used to depict the dynamic effect.For a single-degree-of-freedom system(SDOF)subjected to a sudden dynamic load,the maximum value of DAF is 2.Many design guidelines therefore use 2 as an upper bound to consider the dynamic effect.For a civil engineering structure,which is normally a multiple-degrees-of-freedom(MDOF)system,the DAF may exceed 2 in certain circumstances.The adoption of 2 as the upper bond as suggested by the design guidelines therefore may lead to unsafe structural design.Very limited studies systematically investigate the DAF of a MDOF sysCorrespondence to:Bi Kaiming,Centre for Infrastructure Monitoring and Protection,School of Civil and Mechanical Engineering,Curtin University,Kent Street,Bentley WA 6102,Australia Tel:(+61)892665139 E-mail:kaiming.bi@curtin.edu.autem.This study theoretically investigates the DAF of a MDOF system when it is subjected to a step load based on the fundamental theory of structural dynamics.The condition on which the DAF may exceed 2 is defined.Two numerical examples and one experimental study of a cable-stayed bridge subjected to sudden cable loss are presented to illustrate the problem.
文摘The supply-side reform is an important measure for the high-quality development of China's economy in the new era. The purpose of this paper is to explore the mechanism and influence of technological progress,human capital,consumption demand,resource endowment and government intervention on the adjustment and upgrading of industrial structure,and to deepen the understanding of supply-side reform.
文摘A dynamic weight function method is presented for dynamic stress intensity factors of circular disk with a radial edge crack under external impulsive pressure. The dynamic stresses in a circular disk are solved under abrupt step external pressure using the eigenfunction method. The solution consists of a quasi-static solution satisfying inhomogeneous boundary conditions and a dynamic solution satisfying homogeneous boundary conditions. By making use of Fourier- Bessel series expansion, the history and distribution of dynamic stresses in the circular disk are derived. Furthermore, the equation for stress intensity factors under uniform pressure is used as the reference case, the weight function equation for the circular disk containing an edge crack is worked out, and the dynamic stress intensity factor equation for the circular disk containing a radial edge crack can be given. The results indicate that the stress intensity factors under sudden step external pressure vary periodically with time, and the ratio of the maximum value of dynamic stress intensity factors to the corresponding static value is about 2.0.
基金supported by the China Aviation Industry Corporation I Program (ATPD-1104-02).
文摘Dynamic stress intensity factors are evaluated for thick-walled cylinder with a radial edge crack under internal impulsive pressure. Firstly, the equation for stress intensity factors under static uniform pressure is used as the reference case, and then the weight function for a thick-walled cylinder containing a radial edge crack can be worked out. Secondly, the dynamic stresses in uncracked thick-walled cylinders are solved under internal impulsive pressure by using mode shape function method. The solution consists of a quasi-static solution satisfying inhomogeneous boundary conditions and a dynamic solution satisfying homogeneous boundary condi- tions, and the history and distribution of dynamic stresses in thick-walled cylinders are derived in terms of Fourier-Bessel series. Finally, the dynamic stress intensity factor equations for thick-walled cylinder containing a radial edge crack sub- jected to internal impulsive pressure are given by dynamic weight function method. The finite element method is utilized to verify the results of numerical examples, showing the validity and feasibility of the proposed method.
文摘CO_(2)huff and puff experiments of different injection parameters,production parameters and soaking time were carried out on large-scale cubic and long columnar outcrop samples to analyze dynamic characteristics and influencing factors of CO_(2)huff and puff and the contribution of sweeping mode to recovery.The experimental results show that the development process of CO_(2)huff and puff can be divided into four stages,namely,CO_(2)backflow,production of gas with some oil,high-speed oil production,and oil production rate decline stages.The production of gas with some oil stage is dominated by free gas displacement,and the high-speed oil production stage is dominated by dissolved gas displacement.CO_(2)injection volume and development speed are the major factors affecting the oil recovery.The larger the injected CO_(2)volume and the lower the development speed,the higher the oil recovery will be.The reasonable CO_(2)injection volume and development speed should be worked out according to oilfield demand and economic evaluation.There is a reasonable soaking time in CO_(2)huff and puff.Longer soaking time than the optimum time makes little contribution to oil recovery.In field applications,the stability of bottom hole pressure is important to judge whether the soaking time is sufficient during the huff period.The oil recovery of CO_(2)huff and puff mainly comes from the contribution of flow sweep and diffusion sweep,and diffusion sweep contributes more to the oil recovery when the soaking time is sufficient.
基金TheNationalNaturalScienceFoundationofChina (No .5 0 0 74 0 34)
文摘The granular dynamic shear strength is the same as that of the static one in nature, as found from numerous experiments and investigations. The shear strength is equal to the sum of the internal frictional force and the cohesive force. The influences of type, shape, size distribution, pore ratio, moisture content and variation of vibration velocity on the dynamic shear strength of granules were studied. Based on numerous vibration shear experiments, the authors investigate the mechanism of dynamic shear strength in granules in terms of the fundamental principle and the relevant theory of modern tribology.
基金supported by the Hunan Provincial Natural Science Foundation of China(Grant No.2020JJ4704)the Fundamental Research Funds for the Central Universities of Central South University,China(Grant Nos.2021zzts0881 and 2021zzts0279).
文摘In high-altitude cold areas,freeze-thaw(F-T)cycles induced by day-night and seasonal temperature changes cause numerous rock mass slope engineering disasters.To investigate the dynamic properties of rock in the natural environment of a high-altitude cold area,standard specimens were drilled from the slope of the Jiama copper mine in Tibet,and dynamic compression tests were performed on watersaturated and frozen sandstone with different numbers of F-T cycles(0,10,20,30,and 40)by the split Hopkinson pressure bar(SHPB)system with a cryogenic control system.The influence of water-saturated and frozen conditions on the dynamic performance of sandstone was investigated.The following conclusions are drawn:(1)With increasing strain rate,the attenuation factor(la)of water-saturated sandstone and the intensifying factor(li)of frozen sandstone linearly increase.As the number of F-T cycles increases,the dependence factor(ld)of water-saturated sandstone linearly decreases,whereas the ld of frozen sandstone linearly increases.(2)The prediction equation of the dynamic compressive strength of water-saturated and frozen sandstone is obtained,which can be used to predict the dynamic compressive strength of sandstone after various F-T cycles based on the strain rate.(3)The mesoscopic mechanism of water-saturated and frozen sandstone’s dynamic compressive strength evolution is investigated.The water softening effect causes the dynamic compressive strength of water-saturated sandstone to decrease,whereas the strengthening effect of pore ice causes it to increase.(4)The decrease in the relative dynamic compressive strength of water-saturated sandstone and the increase in the relative dynamic compressive strength of frozen sandstone can be attributed to the increased porosity.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11004200 and 11274315)
文摘We investigate how three-body interactions affect the elementary excitations and dynamic structure factor of a Bose- Einstein condensate trapped in a one-dimensional optical lattice. To this end, we numerically solve the Gross-Pitaevskii equation and then the corresponding Bogoliubov equations. Our results show that three-body interactions can change both the Bogoliubov band structure and the dynamical structure factor dramatically, especially in the case of the two-body interaction being relatively small. Furthermore, when the optical lattice is strong enough, the analytical results, combined with the sum-rule approach, help us to understand that: the effects of three-body interactions on the static structure Ihctor can be significantly amplified by an optical lattice. Our predictions should be observable within the current Bragg spectroscopy experiment.
基金supported by the China Aviation Industry Corporation I Program (No.ATPD-1104-02)the Science Foundation of Nanjing University of Science and Technology (No.2010GJPY026)
文摘A new formula is obtained to calculate dynamic stress intensity factors of the three-point bending specimen containing a single edge crack in this study. Firstly, the weight function for three-point bending specimen containing a single edge crack is derived from a general weight function form and two reference stress intensity factors, the coefficients of the weight function are given. Secondly, the history and distribution of dynamic stresses in uncracked three-point bending specimen are derived based on the vibration theory. Finally~ the dynamic stress intensity factors equations for three-pointing specimen with a single edge crack subjected to impact loadings are obtained by the weight function method. The obtained formula is verified by the comparison with the numerical results of the finite element method (FEM). Good agreements have been achieved. The law of dynamic stress intensity factors of the three-point bending specimen under impact loadings varing with crack depths and loading rates is studied.
文摘Dynamic capacity increase in high voltage electric power transmission line is currently the most economical method for solving electric power transmission bottleneck nowadays. DS18B20 temperature sensor is applied to the dynamic capacity increase of high voltage transmission lines to measure the conductor temperature and ambient temperature. The paper is focused on the experiment of DS18B20 both in the laboratory and outside. From the result of the lab temperature measurement data analysis, using 4 DS18B20’s is the most suitable plan, considering both accuracy and economical efficiency. In the experiment outside, we get four groups of conductor (uncharged) temperature and four groups of ambient temperature. The data proved that DS18B20 has good stability, and small measurement error. It is suitable for measuring the temperature of conductor and ambient in dynamic capacity increase, and helpful to improve the accuracy of the calculation of capacity increasing.
基金Supported by the Key Laboratory Project of Shaanxi Province,China(09JS071)
文摘The dynamic characteristics and influencing factors of groundwater level in Qianyang County were analyzed.The results showed that in the south bank of the Qianhe River,the change of groundwater level was mainly affected by precipitation,and the response of the groundwater level to the change of precipitation was one year later.The groundwater level presented a downward trend on the whole.In the north bank of the Qianhe River,the supply source of the groundwater level included precipitation and hydrology,and the groundwater level showed a rising trend on the whole.In the plain area,there was a sudden change in the groundwater level under the control of human activities.In a word,the main factors influencing the groundwater level in various geological conditions were different,so there were great differences between various regions in the dynamic characteristics of the groundwater level in Qianyang County.