Due to the developments of computer science and technology in recent years,computer models and numerical simulations for large and complicated structures can be done.Among the vast information and results obtained fro...Due to the developments of computer science and technology in recent years,computer models and numerical simulations for large and complicated structures can be done.Among the vast information and results obtained from the analysis and simulations,the damage performance is of great importance since this damage might cause enormous losses for society and humanity,notably in cases of severe damage occurring.One of the most effective tools to handle the results about the damage performance of the structure is the damage index(DI)together with the damage states,which are used to correlate the damage indices with the damage that occurred in the actual structures.Numbers of damage indices proposed and developed rely on the fact that the damage causes noticeable changes in the structural and dynamic properties of the structural components or the whole structure.Therefore,this study presents a comprehensive review of the damage assessment of Reinforced Concrete(RC)structures.It presents step by step the development of the damage indices that are most widely used to estimate the performance of structural components in the structure and subsequently assess the damage degree of such these structures either based on the structural properties or dynamic properties of the structure.Also,several damage states have been introduced to estimate the performance level of the structure.Finally,case studies,methodologies,and applications on the damage assessment of RC structures are reviewed and presented.展开更多
We study the regular or chaotic character of orbits in a 3D dynamical model,describing a triaxial galaxy surrounded by a spherical dark halo component.Our numerical experiments suggest that the percentage of chaotic o...We study the regular or chaotic character of orbits in a 3D dynamical model,describing a triaxial galaxy surrounded by a spherical dark halo component.Our numerical experiments suggest that the percentage of chaotic orbits decreases exponentially as the mass of the dark halo increases.A linear increase of the percentage of the chaotic orbits was observed as the scale length of the halo component increases. In order to distinguish between regular and chaotic motion,we chose to use the total angular momentum Ltot of the 3D orbits as a new indicator.Comparison with other,previously used,dynamical indicators,such as the Lyapunov Characteristic Exponent or the P(f) spectral method,shows that the Ltot indicator gives very fast and reliable results for characterizing the nature of orbits in galactic dynamical models.展开更多
Plant community structure responds strongly to anthropogenic disturbances, which greatly influence community stability. The changes in community structure, aboveground biomass(AGB), biodiversity and community stabil...Plant community structure responds strongly to anthropogenic disturbances, which greatly influence community stability. The changes in community structure, aboveground biomass(AGB), biodiversity and community stability associated with different management practices were studied with a three-year field investigation in a temperate steppe of Inner Mongolia, China. The species richness, Shannon-Wiener index, evenness, plant functional type abundance, AGB, temporal community stability, summed covariance, scaling coefficient and dominant species stability were compared among areas subjected to long-term reservation(R), long-term grazing(G), mowing since enclosure in 2008(M) and grazing enclosure since 2008(E). Site R had higher perennial grass abundance and lower species richness than sites G, M and E, although the AGB was not significantly different among the four sites. The species structure varied from a single dominant species at site R to multiple dominant species at sites G, M and E. The long-term reservation grassland had lower biodiversity but higher stability, whereas the enclosed grassland with/without mowing had higher biodiversity but lower stability. Different stability mechanisms, such as the compensatory dynamics, mean-variance scaling and dominant species stability were examined. Results showed that community stability was most closely related to the relative stability of the dominant species, which supports the biomass ratio hypothesis proposed by Grime.展开更多
基金This work was supported by the National Natural Science Foundation of China(Grant No.52078361)the Innovation Program of the Shanghai Municipal Education Commission(Grant No.2017-01-07-00-07-E00006).
文摘Due to the developments of computer science and technology in recent years,computer models and numerical simulations for large and complicated structures can be done.Among the vast information and results obtained from the analysis and simulations,the damage performance is of great importance since this damage might cause enormous losses for society and humanity,notably in cases of severe damage occurring.One of the most effective tools to handle the results about the damage performance of the structure is the damage index(DI)together with the damage states,which are used to correlate the damage indices with the damage that occurred in the actual structures.Numbers of damage indices proposed and developed rely on the fact that the damage causes noticeable changes in the structural and dynamic properties of the structural components or the whole structure.Therefore,this study presents a comprehensive review of the damage assessment of Reinforced Concrete(RC)structures.It presents step by step the development of the damage indices that are most widely used to estimate the performance of structural components in the structure and subsequently assess the damage degree of such these structures either based on the structural properties or dynamic properties of the structure.Also,several damage states have been introduced to estimate the performance level of the structure.Finally,case studies,methodologies,and applications on the damage assessment of RC structures are reviewed and presented.
文摘We study the regular or chaotic character of orbits in a 3D dynamical model,describing a triaxial galaxy surrounded by a spherical dark halo component.Our numerical experiments suggest that the percentage of chaotic orbits decreases exponentially as the mass of the dark halo increases.A linear increase of the percentage of the chaotic orbits was observed as the scale length of the halo component increases. In order to distinguish between regular and chaotic motion,we chose to use the total angular momentum Ltot of the 3D orbits as a new indicator.Comparison with other,previously used,dynamical indicators,such as the Lyapunov Characteristic Exponent or the P(f) spectral method,shows that the Ltot indicator gives very fast and reliable results for characterizing the nature of orbits in galactic dynamical models.
基金funded by the National Natural Science Foundation of China (41030535, 41371069)the Fundamental Research Funds for the Central Universitiesthe Program for Changjiang Scholars and Innovative Research Team in University (IRT1108)
文摘Plant community structure responds strongly to anthropogenic disturbances, which greatly influence community stability. The changes in community structure, aboveground biomass(AGB), biodiversity and community stability associated with different management practices were studied with a three-year field investigation in a temperate steppe of Inner Mongolia, China. The species richness, Shannon-Wiener index, evenness, plant functional type abundance, AGB, temporal community stability, summed covariance, scaling coefficient and dominant species stability were compared among areas subjected to long-term reservation(R), long-term grazing(G), mowing since enclosure in 2008(M) and grazing enclosure since 2008(E). Site R had higher perennial grass abundance and lower species richness than sites G, M and E, although the AGB was not significantly different among the four sites. The species structure varied from a single dominant species at site R to multiple dominant species at sites G, M and E. The long-term reservation grassland had lower biodiversity but higher stability, whereas the enclosed grassland with/without mowing had higher biodiversity but lower stability. Different stability mechanisms, such as the compensatory dynamics, mean-variance scaling and dominant species stability were examined. Results showed that community stability was most closely related to the relative stability of the dominant species, which supports the biomass ratio hypothesis proposed by Grime.