Due to the stubborn nature of dynamic job shop scheduling problem,a novel ant colony coordination mechanism is proposed in this paper to search for an optimal schedule in dynamic environment.In ant colony coordination...Due to the stubborn nature of dynamic job shop scheduling problem,a novel ant colony coordination mechanism is proposed in this paper to search for an optimal schedule in dynamic environment.In ant colony coordination mechanism,the dynamic job shop is composed of several autonomous ants.These ants coordinate with each other by simulating the ant foraging behavior of spreading pheromone on the trails,by which they can make information available globally,and further more guide ants make optimal decisions.The proposed mechanism is tested by several instances and the results confirm the validity of it.展开更多
Stochastic dynamic job shop scheduling pro- blem with consideration of sequence-dependent setup times are among the most difficult classes of scheduling problems. This paper assesses the performance of nine dispatchin...Stochastic dynamic job shop scheduling pro- blem with consideration of sequence-dependent setup times are among the most difficult classes of scheduling problems. This paper assesses the performance of nine dispatching rules in such shop from makespan, mean flow time, maximum flow time, mean tardiness, maximum tardiness, number of tardy jobs, total setups and mean setup time performance measures viewpoint. A discrete event simulation model of a stochastic dynamic job shop manufacturing system is developed for investigation purpose. Nine dispatching rules identified from literature are incorporated in the simulation model. The simulation experiments are conducted under due date tightness factor of 3, shop utilization percentage of 90 % and setup times less than processing times. Results indicate that shortest setup time (SIMSET) rule provides the best performance for mean flow time and number of tardy jobs measures. The job with similar setup and modified earliest due date (JMEDD) rule provides the best performance for make- span, maximum flow time, mean tardiness, maximum tardiness, total setups and mean setup time measures.展开更多
基金National Natural Science Foundation of China(No.50575137)National Science and Technology Support Project(No.2006BAF01A44)National High Technology Research and Development Program of China(863 Program,No.2007AA04Z109)
文摘Due to the stubborn nature of dynamic job shop scheduling problem,a novel ant colony coordination mechanism is proposed in this paper to search for an optimal schedule in dynamic environment.In ant colony coordination mechanism,the dynamic job shop is composed of several autonomous ants.These ants coordinate with each other by simulating the ant foraging behavior of spreading pheromone on the trails,by which they can make information available globally,and further more guide ants make optimal decisions.The proposed mechanism is tested by several instances and the results confirm the validity of it.
文摘Stochastic dynamic job shop scheduling pro- blem with consideration of sequence-dependent setup times are among the most difficult classes of scheduling problems. This paper assesses the performance of nine dispatching rules in such shop from makespan, mean flow time, maximum flow time, mean tardiness, maximum tardiness, number of tardy jobs, total setups and mean setup time performance measures viewpoint. A discrete event simulation model of a stochastic dynamic job shop manufacturing system is developed for investigation purpose. Nine dispatching rules identified from literature are incorporated in the simulation model. The simulation experiments are conducted under due date tightness factor of 3, shop utilization percentage of 90 % and setup times less than processing times. Results indicate that shortest setup time (SIMSET) rule provides the best performance for mean flow time and number of tardy jobs measures. The job with similar setup and modified earliest due date (JMEDD) rule provides the best performance for make- span, maximum flow time, mean tardiness, maximum tardiness, total setups and mean setup time measures.