期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Land Use and Land Cover Dynamics in the Urban Watershed of Kimemi River (Butembo/D.R.C) 被引量:2
1
作者 Jonathan Ahadi Mahamba Gloire Kayitoghera Mulondi +1 位作者 Moïse Musubao Kapiri Walere Muhindo Sahani 《Journal of Geoscience and Environment Protection》 2022年第6期204-219,共16页
Changes in land use and land cover (LULC) influence hydrological processes in a watershed. This study analyses the dynamics of LULC in the Kimemi watershed from 1987 to 2021. GIS and remote sensing tools as well as la... Changes in land use and land cover (LULC) influence hydrological processes in a watershed. This study analyses the dynamics of LULC in the Kimemi watershed from 1987 to 2021. GIS and remote sensing tools as well as landscape pattern analysis were used to achieve this purpose. The results reveal that the LULC change is globally marked by an increase in the bare land and building at the expense of the low vegetation (grassland). Between 1987 and 2011, the bare land and buildings (Tg = 61.33%) and the woodland (Tg = 34.2%) classes increased, whereas the grassland class decreased (Tg = -39.5%). On the other hand, between 2011 and 2015, the bare land and building class still increased (Tg = 29.9%) while that of grassland and woodland decreased with Tg = -37.3% and Tg = -4.9%, respectively. Finally, the dynamics observed from 2015 to 2021 is marked by small changes between classes with Tg values of 2.1%, 1.9% and -8.9%, respectively, for the bare land and building, grassland and woodland classes, respectively. The main spatial transformation processes observed are creation and dissection for the bare land and building class, and the grassland class respectively. In particular, the woodland class underwent the creation process between 1987 and 2011 before undergoing attrition (2011-2015-2021). Reduced vegetated areas give rise to new planning decisions to mitigate the hydrological risks that could result from this situation. 展开更多
关键词 land use and land Cover dynamics WATERSHED Kimemi River Butembo
下载PDF
International Conference on Land Use / Cover Change Dynamics
2
《Journal of Geographical Sciences》 SCIE CSCD 2001年第1期121-,共1页
Organized by: Beijing Normal University, National Natural Science Foundation of China Hosted by: Institute of Resources Science, Beijing Normal UniversityKey Laboratory of Environmental Change and Natural Disaster, Mi... Organized by: Beijing Normal University, National Natural Science Foundation of China Hosted by: Institute of Resources Science, Beijing Normal UniversityKey Laboratory of Environmental Change and Natural Disaster, Ministry of Education of ChinaTopics:1) Detecting and monitoring LUCC2) Temporal-spatial characteristics in LUCC3) Driving model for LUCC4) Forecasting and modeling LUCC 5) Phenological and biochemical response on LUCC6) Regional LUCC and microclimate 7) LUCC in the context of global change8) Impact of global change on the sustainable land-use modelingAbstract submission: The official language of this conference is English. We invite papers written in English and an abstract of less than one page of standard A4 size to the Conference Secretariat by Apr 15, 2001. Registration Fee: 280 US$ (300 US$ after July 15, 2001)Add:No. 19, Xinjiekouwai Street, 100875, Institute of Resources Science, Beijing Normal University, Beijing, ChinaTel:86-10-62207656 or 62209024 Fax:010-62208178http:// 202.112.93.50/LUCCD2001/index.htmlE-mail: Pwang@bnu.edu.cn Cyh@bnu.edu. 展开更多
关键词 LUCCD’2001 First Circular Announcement International Conference on land use/Cover Change dynamics
下载PDF
Land use and landscape pattern change: a linkage to the construction of the Qinghai-Xizang Highway 被引量:8
3
作者 YAN Jianzhong, ZHANG Yili, LIU Linshan, LIU Yanhua2, ZHENG Du (1. Inst. of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China 2. The Ministry of Science and Technology, Beijing 100101, China 3. College of Resources and Enviro 《Journal of Geographical Sciences》 SCIE CSCD 2002年第3期253-265,共13页
Based on digital land use data from 1995 to 2000 and road data, the land use and landscape changes of Golmud, Qumaleb and Zhidoi are studied on a macro-scale. Land use and landscape changes in highway buffer zones and... Based on digital land use data from 1995 to 2000 and road data, the land use and landscape changes of Golmud, Qumaleb and Zhidoi are studied on a macro-scale. Land use and landscape changes in highway buffer zones and city expansion are special subjects. A new formula is used to define the exact degree of dynamic land use. To adequately define land use and landscape pattern changes, the buffer zones, illustrating the changes at different distances from the road, are recognized with ArcGIS 8.1 software. Prominent changes took place in land use and landscape patterns from 1995 to 2000, and the area of built-up land increased by 323.8%. The comprehensive degree of dynamic land use is 2.25, and the degree of dynamic land use of built-up land is the highest, followed by cultivated land. Woodland has the lowest value. The used degree index of land resources declined by 38.8 from 1995 to 2000. Landscape changed dramatically which influenced ecological processes immensely. Different from the corridor effect of other traffic routes, the corridor effect of this section of road is not obvious and its “point” radiation effect can be easily seen. The expanding range of Golmud City is confined to a 3 km buffer, while for Wudaoliang, it is 1 km. No land use change happened in the Nanshankou buffer. 展开更多
关键词 land use change comprehensive index of the degree of land use diagnostic index of landscape degree of dynamic land use Qinghai-Xizang Highway
下载PDF
Land use/land cover change responses to ecological water conveyance in the lower reaches of Tarim River,China
4
作者 WANG Shanshan ZHOU Kefa +2 位作者 ZUO Qiting WANG Jinlin WANG Wei 《Journal of Arid Land》 SCIE CSCD 2021年第12期1274-1286,共13页
The Tarim River is the longest inland river in China and is considered as an important river to protect the oasis economy and environment of the Tarim Basin.However,excessive exploitation and over-utilization of natur... The Tarim River is the longest inland river in China and is considered as an important river to protect the oasis economy and environment of the Tarim Basin.However,excessive exploitation and over-utilization of natural resources,particularly water resources,have triggered a series of ecological and environmental problems,such as the reduction in the volume of water in the main river,deterioration of water quality,drying up of downstream rivers,degradation of vegetation,and land desertification.In this study,the land use/land cover change(LUCC)responses to ecological water conveyance in the lower reaches of the Tarim River were investigated using ENVI(Environment for Visualizing Images)and GIS(Geographic Information System)data analysis software for the period of 1990-2018.Multi-temporal remote sensing images and ecological water conveyance data from 1990 to 2018 were used.The results indicate that LUCC covered an area of 2644.34 km^(2) during this period,accounting for 15.79%of the total study area.From 1990 to 2018,wetland,farmland,forestland,and artificial surfaces increased by 533.42 km^(2)(216.77%),446.68 km^(2)(123.66%),284.55 km^(2)(5.67%),and 57.51 km^(2)(217.96%),respectively,whereas areas covered by grassland and other land use/land cover types,such as Gobi,bare soil,and deserts,decreased by 103.34 km2(14.31%)and 1218.83 km2(11.75%),respectively.Vegetation area decreased first and then increased,with the order of 2010<2000<1990<2018.LUCC in the overflow and stagnant areas in the lower reaches of the Tarim River was mainly characterized by fragmentation,irregularity,and complexity.By analyzing the LUCC responses to 19 rounds of ecological water conveyance in the lower reaches of the Tarim River from 2000 to the end of 2018,we proposed guidelines for the rational development and utilization of water and soil resources and formulation of strategies for the sustainable development of the lower reaches of the Tarim River.This study provides scientific guidance for optimal scheduling of water resources in the region. 展开更多
关键词 land use/land cover change(LUCC) remote sensing land use dynamic index ecological water conveyance Tarim River
下载PDF
Integration of Remote Sensing and GIS in Studying Land Cover Trends and Conditions in the Middle Ziz Oasis,Morocco
5
作者 Ali Essahlaoui Abba Mohamed +2 位作者 Eddahby Lhou Faouzi Mohamed Larabi Abdelkader 《International Journal of Geosciences》 2013年第7期1018-1023,共6页
A better understanding of the changing patterns of land use and vegetation cover is a major concern for countries whose ecosystems are under severe degradation. Indeed, the dynamics of land have direct implications on... A better understanding of the changing patterns of land use and vegetation cover is a major concern for countries whose ecosystems are under severe degradation. Indeed, the dynamics of land have direct implications on the availability of natural resources. The palm grove, of oases of Errachidia region, plays an important role in the environmental, social and economic of this region. This research was conducted in the Ziz middle, which is affected by changes in the conditions and composition of land cover change. The application of remote sensing, geographic information systems and satellite imagery analysis with multi-temporal and spatial land use provides, for territorial managers, data updated and improved and a synopsis for effective management of natural resources. This research explores the possibility of identifying, monitoring and mapping land use change and land use on the dynamics of the palm grove in the past 40 years. Satellite images used are Landsat images and multi-temporal dates (MSS (1972), TM (1987), ETM + (2001, 2006 and 2011). These images were georeferenced and radiometrically corrected. In our study, the use of vegetation indices NDVI, SAVI and MASAVI, highlight the magnitude of changes in vegetation cover between 1972 and 2011. A regressive pronounced canopy is generally recognized in the Middle Ziz. This decline is explained by the combined effect of anthropic action (urbanization) and climatic conditions. 展开更多
关键词 Morocco Remote Sensing GIS Ziz Watershed dynamic of land use NDVI
下载PDF
Analysis of the dynamics of land use change and its prediction based on the integration of remotely sensed data and CA-Markov model,in the upstream Citarum Watershed,West Java,Indonesia 被引量:3
6
作者 Fajar Yulianto Taufik Maulana Muhammad Rokhis Khomarudin 《International Journal of Digital Earth》 SCIE EI 2019年第10期1151-1176,共26页
In this research,the integration of remotely sensed data and Cellular Automata-Markov model(CA-Markov)have been used to analyze the dynamics of land use change and its prediction for the next year.Training phase for t... In this research,the integration of remotely sensed data and Cellular Automata-Markov model(CA-Markov)have been used to analyze the dynamics of land use change and its prediction for the next year.Training phase for the CA-Markov model has been created based on the input pair of land use,which is the result of land use mapping using Maximum Likelihood(ML)algorithm.Three-map comparison has been used to evaluate process accuracy assessment of the training phase for the CA-Markov model.Furthermore,the simulation phase for the CAMarkov model can be used to predict land use map for the next year.The analyze of the dynamics of land use change and its prediction during the period 1990 to 2050 can be obtained that the land serves as a water absorbent surfaces such as primary forest,secondary forest and the mixed garden area continued to decline.Meanwhile,on build land area that can lead to reduced surface water absorbing tends to increase from year to year.The results of this research can be used as input for the next research,which aims to determine the impact of land use changes in hydrological conditions against flooding in the research area. 展开更多
关键词 Multi-temporal remotely sensed data CA-Markov model dynamics land use change
原文传递
Geospatial analysis of forest fragmentation in Uttara Kannada District, India 被引量:1
7
作者 Ramachandra T V Bharath Setturu Subash Chandran 《Forest Ecosystems》 SCIE CSCD 2016年第3期206-220,共15页
Background: Landscapes consist of heterogeneous interacting dynamic elements with complex ecological, economic and cultural attributes. These complex interactions help in the sustenance of natural resources through b... Background: Landscapes consist of heterogeneous interacting dynamic elements with complex ecological, economic and cultural attributes. These complex interactions help in the sustenance of natural resources through bio-geochemical and hydrological cycling. The ecosystem functions are altered with changes in the landscape structure, Fragmentation of large contiguous forests to small and isolated forest patches either by natural phenomena or anthropogenic activities leads to drastic changes in forest patch sizes, shape, connectivity and internal heterogeneity, which restrict the movement leading to inbreeding among Meta populations with extirpation of species. Methods: Landscape dynamics are assessed through land use analysis by way of remote sensing data acquired at different time periods. Forest fragmentation is assessed at the pixel level through computation of two indicators, i.e., Pf (the ratio of pixels that are forested to the total non-water pixels in the window) and P~ (the proportion of all adjacent (cardinal directions only) pixel pairs that include at least one forest pixel, for which both pixels are forested). Results: Uttara Kannada District has the distinction of having the highest forest cover in Karnataka State, India. This region has been experiencing changes in its forest cover and consequent alterations in functional abilities of its ecosystem. Temporal land use analyses show the trend of deforestation, evident from the reduction of evergreen - semi evergreen forest cover from 57.31% (1979) to 32.08 % (2013) Forest fragmentation at the landscape level shows a decline of interior forests 64.42 % (1979) to 25.62 % (20] 3) and transition of non-forest categories such as crop land, plantations and built-up areas, amounting now to 47.29 %. PCA prioritized geophysical and socio variables responsible for changes in the landscape structure at local levels. Conclusion: Terrestrial forest ecosystems in Uttara Kannada District of Central Western Ghats have been experiencing threats due to deforestation with land use changes and fragmentation of contiguous forests, as is evident from the decline of interior forests and consequent increases in patch, transitional, edge and perforated forests. Interior or intact forest cover in this ecologically fragile region is now 25.62 %. Considering the accelerating rates of forest fragmentation in recent times, the focus should be on reforestation and regeneration of natural vegetation to sustain food and water security and the livelihood of local populations. This requires innovation with holistic approaches in the management of forests by involving all local stakeholders to minimize the encroachment of forests, and improvements in regeneration. 展开更多
关键词 land use dynamics Forest fraqmentation Interior forests BIODIVERSITY Geophysical variables
下载PDF
Assessment of land use change and its effect on soil carbon stock using multitemporal satellite data in semiarid region of Rajasthan, India 被引量:2
8
作者 Garima Sharma L.K.Sharma K.C.Sharma 《Ecological Processes》 SCIE EI 2019年第1期513-529,共17页
Background:Land use change plays a vital role in global carbon dynamics.Understanding land use change impact on soil carbon stock is crucial for implementing land use management to increase carbon stock and reducing c... Background:Land use change plays a vital role in global carbon dynamics.Understanding land use change impact on soil carbon stock is crucial for implementing land use management to increase carbon stock and reducing carbon emission.Therefore,the objective of our study was to determine land use change and to assess its effect on soil carbon stock in semi-arid part of Rajasthan,India.Landsat temporal satellite data of Pushkar valley region of Rajasthan acquired on 1993,2003,and 2014 were analyzed to assess land use change.Internal trading of land use was depicted throughmatrices.Soil organic carbon(SOC)stock was calculated for soil to a depth of 30 cm in each land use type in 2014 using field data collection.The SOC stock for previous years was estimated using stock change factor.The effect of land use change on SOC stock was determined by calculating change in SOC stock(t/ha)by deducting the base-year SOC stock from the final year stock of a particular land use conversion.Results:The total area under agricultural lands was increased by 32.14%while that under forest was decreased by 23.14%during the time period of 1993–2014.Overall land use change shows that in both the periods(1993–2003 and 2003–2014),7%of forest area was converted to agricultural land and about 15%changes occurred among agricultural land.In 1993–2003,changes among agricultural land led to maximum loss of soil carbon,i.e.,4.88 Mt C and during 2003–2014,conversion of forest to agricultural land led to loss in 3.16 Mt C.Conclusion:There was a continuous decrease in forest area and increase in cultivated area in each time period.Land use change led to alteration in carbon equity in soil due to change or loss in vegetation.Overall,we can conclude that the internal trading of land use area during the 10-year period(1993–2003)led to net loss of SOC stock by 8.29 Mt C.Similarly,land use change during 11-year period(2003–2014)caused net loss of SOC by 2.76 Mt C.Efforts should be made to implement proper land use management practices to enhance the SOC content. 展开更多
关键词 Multitemporal satellite data land use change dynamics Internal trading of land use SOC stock Stock change factor Change in SOC pool land use management
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部