Two Relative-Residual-based Dynamic Schedules(RRDS) for Belief Propagation(BP) decoding of Low-Density Parity-Check(LDPC) codes are proposed,in which the Variable code-RRDS(VN-RRDS) is a greediness-reduced version of ...Two Relative-Residual-based Dynamic Schedules(RRDS) for Belief Propagation(BP) decoding of Low-Density Parity-Check(LDPC) codes are proposed,in which the Variable code-RRDS(VN-RRDS) is a greediness-reduced version of the Check code-RRDS(CN-RRDS).The RRDS only processes the variable(or check) node,which has the maximum relative residual among all the variable(or check) nodes in each decoding iteration,thus keeping less greediness and decreased complexity in comparison with the edge-based Variable-to-Check Residual Belief Propagation(VC-RBP) algorithm.Moreover,VN-RRDS propagates first the message which has the largest residual based on all check equations.For different types of LDPC codes,simulation results show that the convergence rate of RRDS is higher than that of VC-RBP while keeping very low computational complexity.Furthermore,VN-RRDS achieves faster convergence as well as better performance than CN-RRDS.展开更多
In this paper, we study stealthy cyber-attacks on actuators of cyber-physical systems(CPS), namely zero dynamics and controllable attacks. In particular, under certain assumptions, we investigate and propose condition...In this paper, we study stealthy cyber-attacks on actuators of cyber-physical systems(CPS), namely zero dynamics and controllable attacks. In particular, under certain assumptions, we investigate and propose conditions under which one can execute zero dynamics and controllable attacks in the CPS. The above conditions are derived based on the Markov parameters of the CPS and elements of the system observability matrix. Consequently, in addition to outlining the number of required actuators to be attacked, these conditions provide one with the minimum system knowledge needed to perform zero dynamics and controllable cyber-attacks. As a countermeasure against the above stealthy cyber-attacks, we develop a dynamic coding scheme that increases the minimum number of the CPS required actuators to carry out zero dynamics and controllable cyber-attacks to its maximum possible value. It is shown that if at least one secure input channel exists, the proposed dynamic coding scheme can prevent adversaries from executing the zero dynamics and controllable attacks even if they have complete knowledge of the coding system. Finally, two illustrative numerical case studies are provided to demonstrate the effectiveness and capabilities of our derived conditions and proposed methodologies.展开更多
Dynamic spectrum access(DSA) in cognitive radio(CR) networks became a challenging research area recently. In CR technology, the DSA between primary users(PUs) and secondary users(SUs) simultaneously can be achieved wi...Dynamic spectrum access(DSA) in cognitive radio(CR) networks became a challenging research area recently. In CR technology, the DSA between primary users(PUs) and secondary users(SUs) simultaneously can be achieved without degrading the performance of the PUs by SUs interference. This can be achieved by donating incentive power to the PUs in order to compensate the interference caused by the SUs. Consequently, PUs allow SUs to share the spectrum. In this paper, orthogonal codes-based dynamic spectrum access(OC-DSA) technique is proposed. OC-DSA technique employs orthogonality between PUs and SUs transmitted data symbols in addition to the incentive power donation. Compared to other techniques, the proposed technique uses a simple encoder at the SU network for the same PU network infrastructure. By applying orthogonal codes, the interference caused by SUs is canceled and hence the donated power to incentivize the PUs is reduced. Also, the SU packet rate is increased significantly. The simulation results show that the proposed technique provides effective improvements over other existing techniques in the signal strength and the bit error rate performance of both the PU network and the SU network at the receiver side. Moreover, the proposed technique requires less donated power to incentivize the PU and has higher packet rate.展开更多
The code benchmarking for hadron linac using the 3D Particle-In-Cell (PIC) code is an important task in the European framework “High Intensity Pulsed Proton Injector” (HIPPI). PARMILA and HALODYN are two of the code...The code benchmarking for hadron linac using the 3D Particle-In-Cell (PIC) code is an important task in the European framework “High Intensity Pulsed Proton Injector” (HIPPI). PARMILA and HALODYN are two of the codes involved in this work. Both of these codes have been developed and used for linac design and beam dynamics studies. In this paper, the simulation results of the beam dynamics were compared and analyzed. As predicted by two codes, the simulation results show some agreements. The physical design strategy which was adopted in two codes was also discussed.展开更多
In order to investigate the micro-process and inner mechanism of rock failure under impact loading, the laboratory tests were carried out on an improved split Hopkinson pressure bar (SHPB) system with synchronized m...In order to investigate the micro-process and inner mechanism of rock failure under impact loading, the laboratory tests were carried out on an improved split Hopkinson pressure bar (SHPB) system with synchronized measurement devices including a high-speed camera and a dynamic strain meter. The experimental results show that the specimens were in the state of good stress equilibrium during the post failure stage even when visible cracks were forming in the specimens. Rock specimens broke into strips but still could bear the external stress and keep force balance. Meanwhile, numerical tests with particle flow code (PFC) revealed that the failure process of rocks can be described by the evolution of micro-fractures. Shear cracks emerged firstly and stopped developing when the external stress was not high enough. Tensile cracks, however, emerged when the rock specimen reached its peak strength and played an important role in controlling the ultimate failure during the post failure stage.展开更多
This paper deals with dynamic airspace sectorization (DAS) problem by an improved genetic algorithm (iGA). A graph model is first constructed that represents the airspace static structure. Then the DAS problem is ...This paper deals with dynamic airspace sectorization (DAS) problem by an improved genetic algorithm (iGA). A graph model is first constructed that represents the airspace static structure. Then the DAS problem is formulated as a graph-partitioning problem to balance the sector workload under the premise of ensuring safety. In the iGA, multiple populations and hybrid coding are applied to determine the optimal sector number and airspace sectorization. The sector constraints are well satisfied by the improved genetic operators and protect zones. This method is validated by being applied to the airspace of North China in terms of three indexes, which are sector balancing index, coordination workload index and sector average flight time index. The improvement is obvious, as the sector balancing index is reduced by 16.5 %, the coordination workload index is reduced by 11.2 %, and the sector average flight time index is increased by 11.4 % during the peak-hour traffic.展开更多
To analyze the impact effect induced by vehicle-bridge coupling vibration during traffic congesting, hundreds and thousands of congestion scenarios consisting of various vehicle platoons were collected and used to dev...To analyze the impact effect induced by vehicle-bridge coupling vibration during traffic congesting, hundreds and thousands of congestion scenarios consisting of various vehicle platoons were collected and used to develop vehicle models as well as traffic congestion load models. Furthermore, the idling vehicle-bridge coupling model was established by the finite element method and the congestion models were applied to calculate dynamic impact factors. Compared with the value specified in Chinese codes, the calculated values were 1.15-2.67 times as large as the latter, which indicates the impact factors caused by idling vehicle-bridge coupling under congestion situations were much larger than those in normal traffic conditions. As a result, a calibration factor of 1.7 was recommended for bridge design or evaluation when considering vehicle-bridge coupling vibration under heavy traffic congestion. The proposed analytical model, analysis method, and results could also be beneficial references to further investigation in this field.展开更多
In this paper, we discuss a class of piecewise linear hyperbolic maps on the 2-torus. These maps arise in the second-order digital fdter with two' s complement arithmetic. By introducing codings underlying the map op...In this paper, we discuss a class of piecewise linear hyperbolic maps on the 2-torus. These maps arise in the second-order digital fdter with two' s complement arithmetic. By introducing codings underlying the map operations, we give some admissibility conditions for symbolic sequences and find some periodic properties of these symbolic sequences. Then we use these conditions to check the admissibility of periodic symbol sequences.展开更多
The purpose of this study was to delve into the aspects of abstract algebra that has a link with topological dynamics in terms of permutation and symmetric groups. This would aid users to appreciate the role it plays ...The purpose of this study was to delve into the aspects of abstract algebra that has a link with topological dynamics in terms of permutation and symmetric groups. This would aid users to appreciate the role it plays in the theory and application of topological dynamics. The usage of matlab programming to carry out the permutations was carried out. The study contributes to the literature by providing candid explanation and usage of data-based evidence documenting the extent to which topological dynamics operates.展开更多
The Rate Distortion Optimization(RDO)algorithm in High Efficiency Video Coding(HEVC)has many iterations and a large number of calculations.In order to decrease the calculation time and meet the requirements of fast sw...The Rate Distortion Optimization(RDO)algorithm in High Efficiency Video Coding(HEVC)has many iterations and a large number of calculations.In order to decrease the calculation time and meet the requirements of fast switching of RDO algorithms of different scales,an RDO dynamic reconfigurable structure is proposed.First,the Quantization Parameter(QP)and bit rate values were loaded through an H⁃tree Configurable Network(HCN),and the execution status of the array was detected in real time.When the switching request of the RDO algorithm was detected,the corresponding configuration information was delivered.This self⁃reconfiguration implementation method improved the flexibility and utilization of hardware.Experimental results show that when the control bit width was only increased by 31.25%,the designed configuration network could increase the number of controllable processing units by 32 times,and the execution cycle was 50%lower than the same type of design.Compared with previous RDO algorithm,the RDO algorithm implemented on the reconfigurable array based on the configuration network had an average operating frequency increase of 12.5%and an area reduction of 56.4%.展开更多
Quick detection of a small initial fault is important for an induction motor to prevent a consequent large fault.The mathematical model with basic motor equations among voltages,currents,and fluxes is analyzed and the...Quick detection of a small initial fault is important for an induction motor to prevent a consequent large fault.The mathematical model with basic motor equations among voltages,currents,and fluxes is analyzed and the motor model equations are described.The fault related features are extracted.An immune memory dynamic clonal strategy(IMDCS)system is applied to detecting the stator faults of induction motor.Four features are obtained from the induction motor,and then these features are given to the IMDCS system.After the motor condition has been learned by the IMDCS system,the memory set obtained in the training stage can be used to detect any fault.The proposed method is experimentally implemented on the induction motor,and the experimental results show the applicability and effectiveness of the proposed method to the diagnosis of stator winding turn faults in induction motors.展开更多
In dynamic test,sampling rate is high and noise is strong,so a signal sparse decomposition method based on Gabor dictionary is put forward.This method iteratively decomposes the signal with the matching pursuit(MP)alg...In dynamic test,sampling rate is high and noise is strong,so a signal sparse decomposition method based on Gabor dictionary is put forward.This method iteratively decomposes the signal with the matching pursuit(MP)algorithm and takes the coherence ratio of the threshold as a condition of iteration termination.Standard MP algorithm is time-consuming,thus an adaptive genetic algorithm is introduced to MP method,which makes computation speed accelerate effectively.Experimental results indicate that this method not only can effectively remove high-frequency noise but also can compress the signal greatly.展开更多
Color metasurface holograms are powerful and versatile platforms for modulating the amplitude,phase,polarization,and other properties of light at multiple operating wavelengths.However,the current color metasurface ho...Color metasurface holograms are powerful and versatile platforms for modulating the amplitude,phase,polarization,and other properties of light at multiple operating wavelengths.However,the current color metasurface holography can only realize static manipulation.In this study,we propose and demonstrate a multiplexing metasurface technique combined with multiwavelength code-division multiplexing(CDM)to realize dynamic manipulation.Multicolor code references are utilized to record information within a single metasurface and increase the information capacity and security for anticracks.A total of 48 monochrome images consisting of pure color characters and multilevel color video frames were reconstructed in dual polarization channels of the birefringent metasurface to exhibit high information density,and a video was displayed via sequential illumination of the corresponding code patterns to verify the ability of dynamic manipulation.Our approach demonstrates significant application potential in optical data storage,optical encryption,multiwavelengthversatile diffractive optical elements,and stimulated emission depletion microscopy.展开更多
To perform an integral simulation of a pool-type reactor using CFD code,a multi-physics coupled code MPC-LBE for an LBE-cooled reactor was proposed by integrating a point kinetics model and a fuel pin heat transfer mo...To perform an integral simulation of a pool-type reactor using CFD code,a multi-physics coupled code MPC-LBE for an LBE-cooled reactor was proposed by integrating a point kinetics model and a fuel pin heat transfer model into self-developed CFD code.For code verification,a code-to-code comparison was employed to validate the CFD code.Furthermore,a typical BT transient benchmark on the LBE-cooled XADS reactor was selected for verification in terms of the integral or system performance.Based on the verification results,it was demonstrated that the MPC-LBE coupled code can perform thermal-hydraulics or safety analyses for analysis for processes involved in LBE-cooled pool-type reactors.展开更多
Based on the principle of 3D particle flow code,a numerical landslide run-out model is presented to simulate the failure process of the Zhenggang landslide(in southwestern China) under the effect of water after a rain...Based on the principle of 3D particle flow code,a numerical landslide run-out model is presented to simulate the failure process of the Zhenggang landslide(in southwestern China) under the effect of water after a rainfall.The relationship between the micro-mechanical parameters and the macro-shear strength of the grain material is determined through numerical calibrations.Then the rainfall effect is considered in numerical simulations and rain-induced sliding processes are performed,which help us to discuss the mechanism of deformation and failure of this landslide together with field observations.It shows the Zhenggang landslide would most likely be activated in Zone I and would gain momentum in Zone II.In order to prevent the potential disaster,a tailing dam is advised to be designed about 175 m downstream from the current landslide boundary of Zone II.Verified by field observations,the presented landslide model can reflect the failure mechanism after rainfall.It can also provide a method to predict the potential disaster and draft disaster prevention measures.展开更多
A simulation code,GOAT,is developed to simulate single-bunch intensity-dependent effects and their interplay in the proton ring of the Electron-Ion Collider in China(EicC)project.GOAT is a scalable and portable macrop...A simulation code,GOAT,is developed to simulate single-bunch intensity-dependent effects and their interplay in the proton ring of the Electron-Ion Collider in China(EicC)project.GOAT is a scalable and portable macroparticle tracking code written in Python and coded by object-oriented programming technology.It allows for transverse and longitudinal tracking,including impedance,space charge effect,electron cloud effect,and beam-beam interaction.In this paper,physical models and numerical approaches for the four types of high-intensity effects,together with the benchmark results obtained through other simulation codes or theories,are presented and discussed.In addition,a numerical application of the cross-talk simulation between the beam-beam interaction and transverse impedance is shown,and a dipole instability is observed below the respective instability threshold.Different mitigation measures implemented in the code are used to suppress the instability.The flexibility,completeness,and advancement demonstrate that GOAT is a powerful tool for beam dynamics studies in the EicC project or other high-intensity accelerators.展开更多
This paper presents aspects of study and simulation approach for planned wind power projects in Kosovo Power System in relation with Grid Code requirements. All generators, connected to the Kosovo Transmission System ...This paper presents aspects of study and simulation approach for planned wind power projects in Kosovo Power System in relation with Grid Code requirements. All generators, connected to the Kosovo Transmission System are required to comply with the Grid Code. The Grid Code was originally developed with conventional synchronous generators. Since Wind Turbine Generators don’t have the same characteristics as synchronous generators, it was considered appropriate to develop a new set of Grid Code provisions specifically for Wind Farm Power Stations in relation with specific characteristic of Kosovo Power System. With high excepted penetration of wind power, a simultaneous loss of Wind Farms generation will put in the risk the security and reliability of Power System. Therefore, the main requirements for Wind farm power stations concern the fault ride through capability, frequency operation range, and reactive power capability of wind turbines. In the case of grid faults wind turbines have to supply a definite reactive power depending on the instantaneous voltage level of connection point and they must return quickly to normal operation.展开更多
Based on the transmission line code (TLCODE), a circuit model is developed here for analyses of main switches in the high pulsed-power facilities. With the structure of the ZR main switch as an example, a circuit mo...Based on the transmission line code (TLCODE), a circuit model is developed here for analyses of main switches in the high pulsed-power facilities. With the structure of the ZR main switch as an example, a circuit model topology of the switch is proposed, and in particular, calculation methods of the dynamic inductance and resistance of the switching arc are described. Moreover, a set of closed equations used for calculations of various node voltages are theoretically derived and numericMly discretized. Based on these discrete equations and the Matlab program, a simulation procedure is established for analyses of the ZR main switch. Voltages and currents at different key points are obtained, and comparisons are made with those of a PSpice L-C model. The comparison results show that these two models are perfectly in accord with each other with discrepancy less than 0.1%, which verifies the effectiveness of the TLCODE model to a certain extent.展开更多
Error codes induced by M-ary modulation and modulation selection in network-based control systems are studied.It is the first time the issue of error codes induced by M-ary modulation is addressed in control field.In ...Error codes induced by M-ary modulation and modulation selection in network-based control systems are studied.It is the first time the issue of error codes induced by M-ary modulation is addressed in control field.In network-based control systems,error codes induced by noisy channel can significantly decrease the quality of control.To solve this problem,the network-based control system with delay and noisy channel is firstly modeled as an asynchronous dynamic system(ADS).Secondly,conditions of packet with error codes(PEC)loss rate by using M-ary modulation are obtained based on dynamic output feedback scheme.Thirdly,more importantly,the selection principle of M-ary modulation is proposed according to the measured signal-to-noise ratio(SNR)and conditions of PEC loss rate.Finally,system stability is analyzed and controller is designed through Lyapunov function and linear matrix inequality(LMI)scheme,and numerical simulations are made to demonstrate the effectiveness of the proposed scheme.展开更多
基金supported by the Fundamental Research Funds for the Central Universities
文摘Two Relative-Residual-based Dynamic Schedules(RRDS) for Belief Propagation(BP) decoding of Low-Density Parity-Check(LDPC) codes are proposed,in which the Variable code-RRDS(VN-RRDS) is a greediness-reduced version of the Check code-RRDS(CN-RRDS).The RRDS only processes the variable(or check) node,which has the maximum relative residual among all the variable(or check) nodes in each decoding iteration,thus keeping less greediness and decreased complexity in comparison with the edge-based Variable-to-Check Residual Belief Propagation(VC-RBP) algorithm.Moreover,VN-RRDS propagates first the message which has the largest residual based on all check equations.For different types of LDPC codes,simulation results show that the convergence rate of RRDS is higher than that of VC-RBP while keeping very low computational complexity.Furthermore,VN-RRDS achieves faster convergence as well as better performance than CN-RRDS.
基金the financial support received from NATO under the Emerging Security Challenges Division programthe support received from NPRP (10-0105-17017) from the Qatar National Research Fund (a member of Qatar Foundation)+1 种基金the support received from the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Department of National Defence (DND) under the Discovery Grant and DND Supplemental Programssupported in part by funding from the Innovation for Defence Excellence and Security (IDEaS) program from the Department of National Defence (DND)。
文摘In this paper, we study stealthy cyber-attacks on actuators of cyber-physical systems(CPS), namely zero dynamics and controllable attacks. In particular, under certain assumptions, we investigate and propose conditions under which one can execute zero dynamics and controllable attacks in the CPS. The above conditions are derived based on the Markov parameters of the CPS and elements of the system observability matrix. Consequently, in addition to outlining the number of required actuators to be attacked, these conditions provide one with the minimum system knowledge needed to perform zero dynamics and controllable cyber-attacks. As a countermeasure against the above stealthy cyber-attacks, we develop a dynamic coding scheme that increases the minimum number of the CPS required actuators to carry out zero dynamics and controllable cyber-attacks to its maximum possible value. It is shown that if at least one secure input channel exists, the proposed dynamic coding scheme can prevent adversaries from executing the zero dynamics and controllable attacks even if they have complete knowledge of the coding system. Finally, two illustrative numerical case studies are provided to demonstrate the effectiveness and capabilities of our derived conditions and proposed methodologies.
文摘Dynamic spectrum access(DSA) in cognitive radio(CR) networks became a challenging research area recently. In CR technology, the DSA between primary users(PUs) and secondary users(SUs) simultaneously can be achieved without degrading the performance of the PUs by SUs interference. This can be achieved by donating incentive power to the PUs in order to compensate the interference caused by the SUs. Consequently, PUs allow SUs to share the spectrum. In this paper, orthogonal codes-based dynamic spectrum access(OC-DSA) technique is proposed. OC-DSA technique employs orthogonality between PUs and SUs transmitted data symbols in addition to the incentive power donation. Compared to other techniques, the proposed technique uses a simple encoder at the SU network for the same PU network infrastructure. By applying orthogonal codes, the interference caused by SUs is canceled and hence the donated power to incentivize the PUs is reduced. Also, the SU packet rate is increased significantly. The simulation results show that the proposed technique provides effective improvements over other existing techniques in the signal strength and the bit error rate performance of both the PU network and the SU network at the receiver side. Moreover, the proposed technique requires less donated power to incentivize the PU and has higher packet rate.
文摘The code benchmarking for hadron linac using the 3D Particle-In-Cell (PIC) code is an important task in the European framework “High Intensity Pulsed Proton Injector” (HIPPI). PARMILA and HALODYN are two of the codes involved in this work. Both of these codes have been developed and used for linac design and beam dynamics studies. In this paper, the simulation results of the beam dynamics were compared and analyzed. As predicted by two codes, the simulation results show some agreements. The physical design strategy which was adopted in two codes was also discussed.
基金Project(2015CB060200)supported by the National Basic Research and Development Program of ChinaProjects(51322403,51274254)supported by the National Natural Science Foundation of China
文摘In order to investigate the micro-process and inner mechanism of rock failure under impact loading, the laboratory tests were carried out on an improved split Hopkinson pressure bar (SHPB) system with synchronized measurement devices including a high-speed camera and a dynamic strain meter. The experimental results show that the specimens were in the state of good stress equilibrium during the post failure stage even when visible cracks were forming in the specimens. Rock specimens broke into strips but still could bear the external stress and keep force balance. Meanwhile, numerical tests with particle flow code (PFC) revealed that the failure process of rocks can be described by the evolution of micro-fractures. Shear cracks emerged firstly and stopped developing when the external stress was not high enough. Tensile cracks, however, emerged when the rock specimen reached its peak strength and played an important role in controlling the ultimate failure during the post failure stage.
基金funded by the Joint Funds of the National Natural Science Foundation of China (61079001)
文摘This paper deals with dynamic airspace sectorization (DAS) problem by an improved genetic algorithm (iGA). A graph model is first constructed that represents the airspace static structure. Then the DAS problem is formulated as a graph-partitioning problem to balance the sector workload under the premise of ensuring safety. In the iGA, multiple populations and hybrid coding are applied to determine the optimal sector number and airspace sectorization. The sector constraints are well satisfied by the improved genetic operators and protect zones. This method is validated by being applied to the airspace of North China in terms of three indexes, which are sector balancing index, coordination workload index and sector average flight time index. The improvement is obvious, as the sector balancing index is reduced by 16.5 %, the coordination workload index is reduced by 11.2 %, and the sector average flight time index is increased by 11.4 % during the peak-hour traffic.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51708069)the Natural Science Foundation of Chongqing(Grant No.cstcstc2018jcyjA2535)。
文摘To analyze the impact effect induced by vehicle-bridge coupling vibration during traffic congesting, hundreds and thousands of congestion scenarios consisting of various vehicle platoons were collected and used to develop vehicle models as well as traffic congestion load models. Furthermore, the idling vehicle-bridge coupling model was established by the finite element method and the congestion models were applied to calculate dynamic impact factors. Compared with the value specified in Chinese codes, the calculated values were 1.15-2.67 times as large as the latter, which indicates the impact factors caused by idling vehicle-bridge coupling under congestion situations were much larger than those in normal traffic conditions. As a result, a calibration factor of 1.7 was recommended for bridge design or evaluation when considering vehicle-bridge coupling vibration under heavy traffic congestion. The proposed analytical model, analysis method, and results could also be beneficial references to further investigation in this field.
基金Project supported by National Natural Science Foundation of Chi-na (Grant No .10471087) ,and Shanghai Municipal Commission ofEducation (Grant No .03AK33)
文摘In this paper, we discuss a class of piecewise linear hyperbolic maps on the 2-torus. These maps arise in the second-order digital fdter with two' s complement arithmetic. By introducing codings underlying the map operations, we give some admissibility conditions for symbolic sequences and find some periodic properties of these symbolic sequences. Then we use these conditions to check the admissibility of periodic symbol sequences.
文摘The purpose of this study was to delve into the aspects of abstract algebra that has a link with topological dynamics in terms of permutation and symmetric groups. This would aid users to appreciate the role it plays in the theory and application of topological dynamics. The usage of matlab programming to carry out the permutations was carried out. The study contributes to the literature by providing candid explanation and usage of data-based evidence documenting the extent to which topological dynamics operates.
基金Sponsored by the National Natural Science Foundation of China(Grant Nos.61834005,61772417,61802304,61602377,and 61634004)the Shaanxi Province Coordination Innovation Project of Science and Technology(Grant No.2016KTZDGY02-04-02)+1 种基金the Shaanxi Provincial Key R&D Plan(Grant No.2017GY-060)the Shaanxi International Science and Technology Cooperation Program(Grant No.2018KW-006).
文摘The Rate Distortion Optimization(RDO)algorithm in High Efficiency Video Coding(HEVC)has many iterations and a large number of calculations.In order to decrease the calculation time and meet the requirements of fast switching of RDO algorithms of different scales,an RDO dynamic reconfigurable structure is proposed.First,the Quantization Parameter(QP)and bit rate values were loaded through an H⁃tree Configurable Network(HCN),and the execution status of the array was detected in real time.When the switching request of the RDO algorithm was detected,the corresponding configuration information was delivered.This self⁃reconfiguration implementation method improved the flexibility and utilization of hardware.Experimental results show that when the control bit width was only increased by 31.25%,the designed configuration network could increase the number of controllable processing units by 32 times,and the execution cycle was 50%lower than the same type of design.Compared with previous RDO algorithm,the RDO algorithm implemented on the reconfigurable array based on the configuration network had an average operating frequency increase of 12.5%and an area reduction of 56.4%.
基金National Natural Science Foundation of China(No.61105114)the Key Technology R&D Program of Jiangsu Province,China(No.BE2010189)
文摘Quick detection of a small initial fault is important for an induction motor to prevent a consequent large fault.The mathematical model with basic motor equations among voltages,currents,and fluxes is analyzed and the motor model equations are described.The fault related features are extracted.An immune memory dynamic clonal strategy(IMDCS)system is applied to detecting the stator faults of induction motor.Four features are obtained from the induction motor,and then these features are given to the IMDCS system.After the motor condition has been learned by the IMDCS system,the memory set obtained in the training stage can be used to detect any fault.The proposed method is experimentally implemented on the induction motor,and the experimental results show the applicability and effectiveness of the proposed method to the diagnosis of stator winding turn faults in induction motors.
文摘In dynamic test,sampling rate is high and noise is strong,so a signal sparse decomposition method based on Gabor dictionary is put forward.This method iteratively decomposes the signal with the matching pursuit(MP)algorithm and takes the coherence ratio of the threshold as a condition of iteration termination.Standard MP algorithm is time-consuming,thus an adaptive genetic algorithm is introduced to MP method,which makes computation speed accelerate effectively.Experimental results indicate that this method not only can effectively remove high-frequency noise but also can compress the signal greatly.
基金the National Key R&D Program of China(2021YFA1401200)Beijing Outstanding Young Scientist Program(BJJWZYJH01201910007022)+2 种基金National Natural Science Foundation of China(No.U21A20140,No.92050117)Beijing Municipal Science&Technology Commission,Administrative Commission of Zhongguancun Science Park(No.Z211100004821009)X.Li acknowledges the support from Beijing Institute of Technology Research Fund Program for Young Scholars(XSQD-201904005).
文摘Color metasurface holograms are powerful and versatile platforms for modulating the amplitude,phase,polarization,and other properties of light at multiple operating wavelengths.However,the current color metasurface holography can only realize static manipulation.In this study,we propose and demonstrate a multiplexing metasurface technique combined with multiwavelength code-division multiplexing(CDM)to realize dynamic manipulation.Multicolor code references are utilized to record information within a single metasurface and increase the information capacity and security for anticracks.A total of 48 monochrome images consisting of pure color characters and multilevel color video frames were reconstructed in dual polarization channels of the birefringent metasurface to exhibit high information density,and a video was displayed via sequential illumination of the corresponding code patterns to verify the ability of dynamic manipulation.Our approach demonstrates significant application potential in optical data storage,optical encryption,multiwavelengthversatile diffractive optical elements,and stimulated emission depletion microscopy.
基金supported by the National Natural Science Foundation of China(Nos.12005025,41774190).
文摘To perform an integral simulation of a pool-type reactor using CFD code,a multi-physics coupled code MPC-LBE for an LBE-cooled reactor was proposed by integrating a point kinetics model and a fuel pin heat transfer model into self-developed CFD code.For code verification,a code-to-code comparison was employed to validate the CFD code.Furthermore,a typical BT transient benchmark on the LBE-cooled XADS reactor was selected for verification in terms of the integral or system performance.Based on the verification results,it was demonstrated that the MPC-LBE coupled code can perform thermal-hydraulics or safety analyses for analysis for processes involved in LBE-cooled pool-type reactors.
基金The National Natural Science Foundation of China(Grants Nos.51309089,41472272 and 11202063)the National Key Technology R&D Program(Grant No.2013BAB06B00)+1 种基金the Natural Science Foundation of Jiangsu Province(Grant No.BK20130846)the Fundamental Research Funds for the Central Universities(Grant No.2015B06014)supported this work
文摘Based on the principle of 3D particle flow code,a numerical landslide run-out model is presented to simulate the failure process of the Zhenggang landslide(in southwestern China) under the effect of water after a rainfall.The relationship between the micro-mechanical parameters and the macro-shear strength of the grain material is determined through numerical calibrations.Then the rainfall effect is considered in numerical simulations and rain-induced sliding processes are performed,which help us to discuss the mechanism of deformation and failure of this landslide together with field observations.It shows the Zhenggang landslide would most likely be activated in Zone I and would gain momentum in Zone II.In order to prevent the potential disaster,a tailing dam is advised to be designed about 175 m downstream from the current landslide boundary of Zone II.Verified by field observations,the presented landslide model can reflect the failure mechanism after rainfall.It can also provide a method to predict the potential disaster and draft disaster prevention measures.
基金supported by the National Science Fund for Distinguished Young Scholars (No.11825505)the National Key R&D Program of China (No.2019YFA0405400)。
文摘A simulation code,GOAT,is developed to simulate single-bunch intensity-dependent effects and their interplay in the proton ring of the Electron-Ion Collider in China(EicC)project.GOAT is a scalable and portable macroparticle tracking code written in Python and coded by object-oriented programming technology.It allows for transverse and longitudinal tracking,including impedance,space charge effect,electron cloud effect,and beam-beam interaction.In this paper,physical models and numerical approaches for the four types of high-intensity effects,together with the benchmark results obtained through other simulation codes or theories,are presented and discussed.In addition,a numerical application of the cross-talk simulation between the beam-beam interaction and transverse impedance is shown,and a dipole instability is observed below the respective instability threshold.Different mitigation measures implemented in the code are used to suppress the instability.The flexibility,completeness,and advancement demonstrate that GOAT is a powerful tool for beam dynamics studies in the EicC project or other high-intensity accelerators.
文摘This paper presents aspects of study and simulation approach for planned wind power projects in Kosovo Power System in relation with Grid Code requirements. All generators, connected to the Kosovo Transmission System are required to comply with the Grid Code. The Grid Code was originally developed with conventional synchronous generators. Since Wind Turbine Generators don’t have the same characteristics as synchronous generators, it was considered appropriate to develop a new set of Grid Code provisions specifically for Wind Farm Power Stations in relation with specific characteristic of Kosovo Power System. With high excepted penetration of wind power, a simultaneous loss of Wind Farms generation will put in the risk the security and reliability of Power System. Therefore, the main requirements for Wind farm power stations concern the fault ride through capability, frequency operation range, and reactive power capability of wind turbines. In the case of grid faults wind turbines have to supply a definite reactive power depending on the instantaneous voltage level of connection point and they must return quickly to normal operation.
基金supported by National Natural Science Foundation of China(Nos.51307141,51077111)by the State Key Laboratory Foundational Research Funds of China(Nos.SKLIPR1302Z,SKLIPR1306)
文摘Based on the transmission line code (TLCODE), a circuit model is developed here for analyses of main switches in the high pulsed-power facilities. With the structure of the ZR main switch as an example, a circuit model topology of the switch is proposed, and in particular, calculation methods of the dynamic inductance and resistance of the switching arc are described. Moreover, a set of closed equations used for calculations of various node voltages are theoretically derived and numericMly discretized. Based on these discrete equations and the Matlab program, a simulation procedure is established for analyses of the ZR main switch. Voltages and currents at different key points are obtained, and comparisons are made with those of a PSpice L-C model. The comparison results show that these two models are perfectly in accord with each other with discrepancy less than 0.1%, which verifies the effectiveness of the TLCODE model to a certain extent.
基金Project(61172022) supported by the National Natural Science Foundation of ChinaProject(GDW20151100010) supported by the State Administration of Foreign Experts Affairs of China
文摘Error codes induced by M-ary modulation and modulation selection in network-based control systems are studied.It is the first time the issue of error codes induced by M-ary modulation is addressed in control field.In network-based control systems,error codes induced by noisy channel can significantly decrease the quality of control.To solve this problem,the network-based control system with delay and noisy channel is firstly modeled as an asynchronous dynamic system(ADS).Secondly,conditions of packet with error codes(PEC)loss rate by using M-ary modulation are obtained based on dynamic output feedback scheme.Thirdly,more importantly,the selection principle of M-ary modulation is proposed according to the measured signal-to-noise ratio(SNR)and conditions of PEC loss rate.Finally,system stability is analyzed and controller is designed through Lyapunov function and linear matrix inequality(LMI)scheme,and numerical simulations are made to demonstrate the effectiveness of the proposed scheme.