Based on unified equivalent harmonic loading on seabed foundation and energy approach suggested by the authors, the development of dynamic pore water pressure and stability of soil foundation for the vibration of ocea...Based on unified equivalent harmonic loading on seabed foundation and energy approach suggested by the authors, the development of dynamic pore water pressure and stability of soil foundation for the vibration of ocean gravity structures excited by random wave loading are analysed. It may be seen that the present method for the study of dynamic problems of ocean gravity structure soil foundations is more reasonable and convenient.展开更多
An alternating least squares approach is developed in this paper to identify the exponential recovery dy- namic load model of wide-area power systems. The nonlinear optimization problem is decomposed to two linear lea...An alternating least squares approach is developed in this paper to identify the exponential recovery dy- namic load model of wide-area power systems. The nonlinear optimization problem is decomposed to two linear least squares problems, and solved in an alternating way. Then, a new algorithm for numerical derivative calculation using dis- crete Fourier transform is proposed to attenuate the effect of noises in the process of parameter estimation. Based on the estimated dynamic load characteristics, the application on voltage stability is analyzed. Finally, numerical and laboratory examples are conducted to demonstrate the effectiveness of the orooosed methods.展开更多
基金This project is financially supported by the National Natural Science Foundation of China
文摘Based on unified equivalent harmonic loading on seabed foundation and energy approach suggested by the authors, the development of dynamic pore water pressure and stability of soil foundation for the vibration of ocean gravity structures excited by random wave loading are analysed. It may be seen that the present method for the study of dynamic problems of ocean gravity structure soil foundations is more reasonable and convenient.
基金supported by the National Natural Science Foundation of China(Nos.61202340,61125301)
文摘An alternating least squares approach is developed in this paper to identify the exponential recovery dy- namic load model of wide-area power systems. The nonlinear optimization problem is decomposed to two linear least squares problems, and solved in an alternating way. Then, a new algorithm for numerical derivative calculation using dis- crete Fourier transform is proposed to attenuate the effect of noises in the process of parameter estimation. Based on the estimated dynamic load characteristics, the application on voltage stability is analyzed. Finally, numerical and laboratory examples are conducted to demonstrate the effectiveness of the orooosed methods.