This work presents a novel approach to the dynamic response analysis of a Euler-Bernoulli beam resting on a Winkler soil model and subjected to an impact loading.The approach considers that damping has much less impor...This work presents a novel approach to the dynamic response analysis of a Euler-Bernoulli beam resting on a Winkler soil model and subjected to an impact loading.The approach considers that damping has much less importance in controlling the maximum response to impulsive loadings because the maximum response is reached in a very short time,before the damping forces can dissipate a significant portion of the energy input into the system.The development of two sine series solutions,relating to different types of impulsive loadings,one involving a single concentrated force and the other a distributed line load,are presented.This study revealed that when a simply supported Euler-Bernoulli beam,resting on a Winkler soil model,is subject to an impact load,the resulting vertical displacements,bending moments and shear forces produced along the span of the beam are considerably affected.In particular,the quantification of this effect is best observed,relative to the corresponding static solution,via an amplification factor.The computed impact amplification factors,for the sub-grade moduli used in this study,were in magnitude greater than 2,thus confirming the multiple-degree-of-freedom nature of the problem.展开更多
The magnitude of dynamic load produced by high-speed trains depends on many factors,of which train speed is the most critical one.However,it is quite difficult to determine the effect of train speed on dynamic load us...The magnitude of dynamic load produced by high-speed trains depends on many factors,of which train speed is the most critical one.However,it is quite difficult to determine the effect of train speed on dynamic load using the theoretical methods due to the complexity of the interaction between vehicle and track-subgrade.Thus large-scale model test has gradually become an important approach for studying dynamic responses of ballastless track-subgrade of high-speed railway.In this study,a full-scale model of ballastless track-subgrade was constructed in accordance with the design and construction standards for Shanghai-Nanjing intercity high-speed railway line firstly.Then,the dynamic strain of slab and the dynamic earth pressure of subgrade were measured by conducting single wheel axle excitation test.In addition,the relationship between the dynamic load magnification factor(DLF) and the train speed was obtained.Finally,the DLF of track-subgrade under different train speeds was proposed,similar to that given by German Railway Standard.展开更多
Based on theory of mechanical dynamics, meshing characteristic as well as thedynamic model of double circular arc helical gearing, an analysis approach and a computer programhave been developed for studying the state ...Based on theory of mechanical dynamics, meshing characteristic as well as thedynamic model of double circular arc helical gearing, an analysis approach and a computer programhave been developed for studying the state of dynamic load and factor of dynamic load of thegearing, the changing situation of dynamic load and dynamic load factor vs some affecting factorssuch as gear width, helix angle and accuracy grade etc are investigated. A series of conclusions areobtained: ①With the increasing in the values of gear width, the dynamic load factor appears slowdecreasing tendency in most region of gear width. ②When the accuracy grades of the gearing areimproved, the values of dynamic load factor decrease. ③The value of dynamic load factor appears adecreasing tendency with the increasing of value of helix angle at the same ratio of criticalrotational speed.展开更多
Using digital laser dynamic caustics experimental system and conducting simulation experiment researched the influence rule of blasting excavation of a new roadway on neighboring existed different cross-section roadwa...Using digital laser dynamic caustics experimental system and conducting simulation experiment researched the influence rule of blasting excavation of a new roadway on neighboring existed different cross-section roadways. The experimental results show that the influence of blast load on adjacent roadway has a good relationship with the cross-section of roadway. The expansion distance of precrack existed in circular, arch-wall, rectangular roadway is respectively 1.76, 1.61 and 0 cm under blast load.At the same time, the direct-blast side of rectangular roadway has more obvious damage compared with circular and arch-wall roadway. It explains that plane reflects more stress wave than arc, so that it exerts more tensile failure in the direct-blast side, which leads to less stress wave diffracting to the precrack in the back-blast side. When the precrack extends, higher value dynamic stress intensity factor in circular roadway works longer than that of arch-wall roadway. Indirectly, it explains that plane's weakening function on stress wave is significantly stronger than arc. Stress wave brings about self-evident influence on the upper and bottom endpoints of the rectangular roadway, and it respectively extends 1.03, 2.06 cm along the line link direction of the center of the blasthole and the upper and bottom endpoints on the right wall.展开更多
We studied the dynamic fracture mechanical behavior of rock under different impact rates. The fracture experiment was a three-point bending beam subjected to different impact loads monitored using the reflected causti...We studied the dynamic fracture mechanical behavior of rock under different impact rates. The fracture experiment was a three-point bending beam subjected to different impact loads monitored using the reflected caustics method. The mechanical parameters for fracture of the three-poim bending beam specimen under impact load are analyzed. The mechanism of crack propagation is discussed. Experimental results show that the dynamic stress intensity factor increases before crack initiation. When the dynamic stress intensity factor reaches its maximum value the crack starts to develop. After crack initiation the dynamic stress intensity factor decreases rapidly and oscillates. As the impact rate increases the cracks initiate earlier, the maximum value of crack growth velocity becomes smaller and the values of dynamic stress intensity factor also vary less during crack propagation. The results provide a theoretical basis for the study of rock dynamic fracture.展开更多
It is well-known that the responses of a structure are different when subjected to a static load or a sudden step load.The dynamic amplification factor(DAF),which is defined as the ratio of the amplitude of the vibrat...It is well-known that the responses of a structure are different when subjected to a static load or a sudden step load.The dynamic amplification factor(DAF),which is defined as the ratio of the amplitude of the vibratory response to the static response,is normally used to depict the dynamic effect.For a single-degree-of-freedom system(SDOF)subjected to a sudden dynamic load,the maximum value of DAF is 2.Many design guidelines therefore use 2 as an upper bound to consider the dynamic effect.For a civil engineering structure,which is normally a multiple-degrees-of-freedom(MDOF)system,the DAF may exceed 2 in certain circumstances.The adoption of 2 as the upper bond as suggested by the design guidelines therefore may lead to unsafe structural design.Very limited studies systematically investigate the DAF of a MDOF sysCorrespondence to:Bi Kaiming,Centre for Infrastructure Monitoring and Protection,School of Civil and Mechanical Engineering,Curtin University,Kent Street,Bentley WA 6102,Australia Tel:(+61)892665139 E-mail:kaiming.bi@curtin.edu.autem.This study theoretically investigates the DAF of a MDOF system when it is subjected to a step load based on the fundamental theory of structural dynamics.The condition on which the DAF may exceed 2 is defined.Two numerical examples and one experimental study of a cable-stayed bridge subjected to sudden cable loss are presented to illustrate the problem.展开更多
In the railway bridge analysis and design method,dynamic train loads are regarded as static loads enhanced by an impact factor(IF).The IF coefficients for various railway bridges have been reported as a function of sp...In the railway bridge analysis and design method,dynamic train loads are regarded as static loads enhanced by an impact factor(IF).The IF coefficients for various railway bridges have been reported as a function of span length or frequency of the bridges in Eurocode(2003).However,these IF coefficient values neglect the effects of very high speeds(>200 km/h)and soil-structure interaction(SSI).In this work,a comprehensive study to assess the impact factor coefficients of mid-span vertical displacements for continuous and integral railway bridges subjected to high-speed moving loads is reported.Three different configurations,each for the three-dimensional(3D)continuous and integral bridge,are considered.Also,single-track(1-T)and two-track(2-T)“real train”loading cases for both these bridge types are considered.Subsequently,finite element analysis of the full-scale 3D bridge models,to identify their IF values,considering the effects of SSI for three different soil conditions,is conducted.The IF values obtained from the study for both bridge types are comparable and are greater than the values recommended by Eurocode(2003).The results reveal that with a loss of soil stiffness,the IF value reduces;thus,it confirms the importance of SSI analysis.展开更多
This paper presents a formulation for three-dimensional elasto-dynamics with an elliptic crack based on the Laplace and Fourier transforms and the convolution theorem. The dynamic stress intensity factor for the crack...This paper presents a formulation for three-dimensional elasto-dynamics with an elliptic crack based on the Laplace and Fourier transforms and the convolution theorem. The dynamic stress intensity factor for the crack is determined by solving a Fredholm integral equation of the first kind. The results of this paper are very close to those given by the two-dimensional dual integral equation method.展开更多
A new formula is obtained to calculate dynamic stress intensity factors of the three-point bending specimen containing a single edge crack in this study. Firstly, the weight function for three-point bending specimen c...A new formula is obtained to calculate dynamic stress intensity factors of the three-point bending specimen containing a single edge crack in this study. Firstly, the weight function for three-point bending specimen containing a single edge crack is derived from a general weight function form and two reference stress intensity factors, the coefficients of the weight function are given. Secondly, the history and distribution of dynamic stresses in uncracked three-point bending specimen are derived based on the vibration theory. Finally~ the dynamic stress intensity factors equations for three-pointing specimen with a single edge crack subjected to impact loadings are obtained by the weight function method. The obtained formula is verified by the comparison with the numerical results of the finite element method (FEM). Good agreements have been achieved. The law of dynamic stress intensity factors of the three-point bending specimen under impact loadings varing with crack depths and loading rates is studied.展开更多
The dynamic stress intensity factor history for a half plane crack in an otherwise unbounded elastic body,with the crack faces subjected to a traction distribution consisting of two pairs of combined mode point loads ...The dynamic stress intensity factor history for a half plane crack in an otherwise unbounded elastic body,with the crack faces subjected to a traction distribution consisting of two pairs of combined mode point loads that move in a direction perpendicular to the crack edge is considered.The analytic expression for the combined mode stress intensity factors as a function of time for any point along the crack edge is obtained.The method of solution is based on the application of integral transform together with the Wiener-Hopf technique and the Cagniard-de Hoop method. Some features of the solution are discussed and graphical results for various point load speeds are presented.展开更多
基金l’UniversitéLaval for the financial support of his sabbatical year at Dipartimento di Bioscienze e Territorio,Universitàdegli Studi del Molise in Campobasso,Italy。
文摘This work presents a novel approach to the dynamic response analysis of a Euler-Bernoulli beam resting on a Winkler soil model and subjected to an impact loading.The approach considers that damping has much less importance in controlling the maximum response to impulsive loadings because the maximum response is reached in a very short time,before the damping forces can dissipate a significant portion of the energy input into the system.The development of two sine series solutions,relating to different types of impulsive loadings,one involving a single concentrated force and the other a distributed line load,are presented.This study revealed that when a simply supported Euler-Bernoulli beam,resting on a Winkler soil model,is subject to an impact load,the resulting vertical displacements,bending moments and shear forces produced along the span of the beam are considerably affected.In particular,the quantification of this effect is best observed,relative to the corresponding static solution,via an amplification factor.The computed impact amplification factors,for the sub-grade moduli used in this study,were in magnitude greater than 2,thus confirming the multiple-degree-of-freedom nature of the problem.
基金the National Natural Science Foundation of China(51225804,U1234204,51222803,51178418)for the financial supports
文摘The magnitude of dynamic load produced by high-speed trains depends on many factors,of which train speed is the most critical one.However,it is quite difficult to determine the effect of train speed on dynamic load using the theoretical methods due to the complexity of the interaction between vehicle and track-subgrade.Thus large-scale model test has gradually become an important approach for studying dynamic responses of ballastless track-subgrade of high-speed railway.In this study,a full-scale model of ballastless track-subgrade was constructed in accordance with the design and construction standards for Shanghai-Nanjing intercity high-speed railway line firstly.Then,the dynamic strain of slab and the dynamic earth pressure of subgrade were measured by conducting single wheel axle excitation test.In addition,the relationship between the dynamic load magnification factor(DLF) and the train speed was obtained.Finally,the DLF of track-subgrade under different train speeds was proposed,similar to that given by German Railway Standard.
基金This project is supported by Science and Technology Developing Foundation of Tianjin Higher Education (No.20030703).
文摘Based on theory of mechanical dynamics, meshing characteristic as well as thedynamic model of double circular arc helical gearing, an analysis approach and a computer programhave been developed for studying the state of dynamic load and factor of dynamic load of thegearing, the changing situation of dynamic load and dynamic load factor vs some affecting factorssuch as gear width, helix angle and accuracy grade etc are investigated. A series of conclusions areobtained: ①With the increasing in the values of gear width, the dynamic load factor appears slowdecreasing tendency in most region of gear width. ②When the accuracy grades of the gearing areimproved, the values of dynamic load factor decrease. ③The value of dynamic load factor appears adecreasing tendency with the increasing of value of helix angle at the same ratio of criticalrotational speed.
基金provided by the National Natural Science Foundation of China (Nos. 51274204 and 51134025)National Key Basic Research Program (No. 2010CB732002)The Ministry of Education Program for New Century Excellent Talents to Support Project of China (No. NCET-12-0965)
文摘Using digital laser dynamic caustics experimental system and conducting simulation experiment researched the influence rule of blasting excavation of a new roadway on neighboring existed different cross-section roadways. The experimental results show that the influence of blast load on adjacent roadway has a good relationship with the cross-section of roadway. The expansion distance of precrack existed in circular, arch-wall, rectangular roadway is respectively 1.76, 1.61 and 0 cm under blast load.At the same time, the direct-blast side of rectangular roadway has more obvious damage compared with circular and arch-wall roadway. It explains that plane reflects more stress wave than arc, so that it exerts more tensile failure in the direct-blast side, which leads to less stress wave diffracting to the precrack in the back-blast side. When the precrack extends, higher value dynamic stress intensity factor in circular roadway works longer than that of arch-wall roadway. Indirectly, it explains that plane's weakening function on stress wave is significantly stronger than arc. Stress wave brings about self-evident influence on the upper and bottom endpoints of the rectangular roadway, and it respectively extends 1.03, 2.06 cm along the line link direction of the center of the blasthole and the upper and bottom endpoints on the right wall.
基金the support of the National Natural Science Foundation of China (Grant No.50774086 and 50874109)
文摘We studied the dynamic fracture mechanical behavior of rock under different impact rates. The fracture experiment was a three-point bending beam subjected to different impact loads monitored using the reflected caustics method. The mechanical parameters for fracture of the three-poim bending beam specimen under impact load are analyzed. The mechanism of crack propagation is discussed. Experimental results show that the dynamic stress intensity factor increases before crack initiation. When the dynamic stress intensity factor reaches its maximum value the crack starts to develop. After crack initiation the dynamic stress intensity factor decreases rapidly and oscillates. As the impact rate increases the cracks initiate earlier, the maximum value of crack growth velocity becomes smaller and the values of dynamic stress intensity factor also vary less during crack propagation. The results provide a theoretical basis for the study of rock dynamic fracture.
基金National Science Foundation of China(NSFC)under Grant No.51508102,China Postdoctoral Science Foundation under Grant No.2018M631292the Beijing Postdoctoral Science Foundation under Grant No.2018-ZZ-032Financial support was also provided by the China Scholarship Council(CSC)under Grant No.201406655012。
文摘It is well-known that the responses of a structure are different when subjected to a static load or a sudden step load.The dynamic amplification factor(DAF),which is defined as the ratio of the amplitude of the vibratory response to the static response,is normally used to depict the dynamic effect.For a single-degree-of-freedom system(SDOF)subjected to a sudden dynamic load,the maximum value of DAF is 2.Many design guidelines therefore use 2 as an upper bound to consider the dynamic effect.For a civil engineering structure,which is normally a multiple-degrees-of-freedom(MDOF)system,the DAF may exceed 2 in certain circumstances.The adoption of 2 as the upper bond as suggested by the design guidelines therefore may lead to unsafe structural design.Very limited studies systematically investigate the DAF of a MDOF sysCorrespondence to:Bi Kaiming,Centre for Infrastructure Monitoring and Protection,School of Civil and Mechanical Engineering,Curtin University,Kent Street,Bentley WA 6102,Australia Tel:(+61)892665139 E-mail:kaiming.bi@curtin.edu.autem.This study theoretically investigates the DAF of a MDOF system when it is subjected to a step load based on the fundamental theory of structural dynamics.The condition on which the DAF may exceed 2 is defined.Two numerical examples and one experimental study of a cable-stayed bridge subjected to sudden cable loss are presented to illustrate the problem.
文摘In the railway bridge analysis and design method,dynamic train loads are regarded as static loads enhanced by an impact factor(IF).The IF coefficients for various railway bridges have been reported as a function of span length or frequency of the bridges in Eurocode(2003).However,these IF coefficient values neglect the effects of very high speeds(>200 km/h)and soil-structure interaction(SSI).In this work,a comprehensive study to assess the impact factor coefficients of mid-span vertical displacements for continuous and integral railway bridges subjected to high-speed moving loads is reported.Three different configurations,each for the three-dimensional(3D)continuous and integral bridge,are considered.Also,single-track(1-T)and two-track(2-T)“real train”loading cases for both these bridge types are considered.Subsequently,finite element analysis of the full-scale 3D bridge models,to identify their IF values,considering the effects of SSI for three different soil conditions,is conducted.The IF values obtained from the study for both bridge types are comparable and are greater than the values recommended by Eurocode(2003).The results reveal that with a loss of soil stiffness,the IF value reduces;thus,it confirms the importance of SSI analysis.
基金The project supported by the National Natural Science Foundation of China (K19672007)
文摘This paper presents a formulation for three-dimensional elasto-dynamics with an elliptic crack based on the Laplace and Fourier transforms and the convolution theorem. The dynamic stress intensity factor for the crack is determined by solving a Fredholm integral equation of the first kind. The results of this paper are very close to those given by the two-dimensional dual integral equation method.
基金supported by the China Aviation Industry Corporation I Program (No.ATPD-1104-02)the Science Foundation of Nanjing University of Science and Technology (No.2010GJPY026)
文摘A new formula is obtained to calculate dynamic stress intensity factors of the three-point bending specimen containing a single edge crack in this study. Firstly, the weight function for three-point bending specimen containing a single edge crack is derived from a general weight function form and two reference stress intensity factors, the coefficients of the weight function are given. Secondly, the history and distribution of dynamic stresses in uncracked three-point bending specimen are derived based on the vibration theory. Finally~ the dynamic stress intensity factors equations for three-pointing specimen with a single edge crack subjected to impact loadings are obtained by the weight function method. The obtained formula is verified by the comparison with the numerical results of the finite element method (FEM). Good agreements have been achieved. The law of dynamic stress intensity factors of the three-point bending specimen under impact loadings varing with crack depths and loading rates is studied.
基金the National Natural Science Foundation of China
文摘The dynamic stress intensity factor history for a half plane crack in an otherwise unbounded elastic body,with the crack faces subjected to a traction distribution consisting of two pairs of combined mode point loads that move in a direction perpendicular to the crack edge is considered.The analytic expression for the combined mode stress intensity factors as a function of time for any point along the crack edge is obtained.The method of solution is based on the application of integral transform together with the Wiener-Hopf technique and the Cagniard-de Hoop method. Some features of the solution are discussed and graphical results for various point load speeds are presented.