期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Dynamic Characteristics and Simplified Numerical Methods of An All-Vertical-Piled Wharf in Offshore Deep Water 被引量:5
1
作者 张华庆 孙熙平 +2 位作者 王元战 尹纪龙 王朝阳 《China Ocean Engineering》 SCIE EI CSCD 2015年第5期705-718,共14页
There has been a growing trend in the development of offshore deep-water ports in China. For such deep sea projects, all-vertical-piled wharves are suitable structures and generally located in open waters, greatly aff... There has been a growing trend in the development of offshore deep-water ports in China. For such deep sea projects, all-vertical-piled wharves are suitable structures and generally located in open waters, greatly affected by wave action. Currently, no systematic studies or simplified numerical methods are available for deriving the dynamic characteristics and dynamic responses of all-vertical-piled wharves under wave cyclic loads. In this article, we compare the dynamic characteristics of an all-vertical-piled wharf with those of a traditional inshore high-piled wharf through numerical analysis; our research reveals that the vibration period of an all-vertical-piled wharf under cyclic loading is longer than that of an inshore high-piled wharf and is much closer to the period of the loading wave. Therefore, dynamic calculation and analysis should be conducted when designing and calculating the characteristics of an all-vertical-piled wharf. We establish a dynamic finite element model to examine the dynamic response of an all-vertical-piled wharf under wave cyclic loads and compare the results with those under wave equivalent static load; the comparison indicates that dynamic amplification of the structure is evident when the wave dynamic load effect is taken into account. Furthermore, a simplified dynamic numerical method for calculating the dynamic response of an all-vertical-piled wharf is established based on the P-Y curve. Compared with finite element analysis, the simplified method is more convenient to use and applicable to large structural deformation while considering the soil non-linearity. We confirmed that the simplified method has acceptable accuracy and can be used in engineering applications. 展开更多
关键词 offshore deep water port all-vertical-piled wharf dynamic characteristics wave cyclic loads dynamic response simplified calculating methods
下载PDF
Theoretical Research and Experimental Validation of Elastic Dynamic Load Spectra on Bogie Frame of High-speed Train 被引量:13
2
作者 ZHU Ning SUN Shouguang +1 位作者 LI Qiang ZOU Hua 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第3期498-506,共9页
When a train runs at high speeds, the external exciting frequencies approach the natural frequencies of bogie critical components, thereby inducing strong elastic vibrations. The present international reliability test... When a train runs at high speeds, the external exciting frequencies approach the natural frequencies of bogie critical components, thereby inducing strong elastic vibrations. The present international reliability test evaluation standard and design criteria of bogie frames are all based on the quasi-static deformation hypothesis. Structural fatigue damage generated by structural elastic vibrations has not yet been included. In this paper, theoretical research and experimental validation are done on elastic dynamic load spectra on bogie frame of high-speed train. The construction of the load series that correspond to elastic dynamic deformation modes is studied. The simplified form of the load series is obtained. A theory of simplified dynamic load–time histories is then deduced. Measured data from the Beijing–Shanghai Dedicated Passenger Line are introduced to derive the simplified dynamic load–time histories. The simplified dynamic discrete load spectra of bogie frame are established. Based on the damage consistency criterion and a genetic algorithm, damage consistency calibration of the simplified dynamic load spectra is finally performed. The computed result proves that the simplified load series is reasonable. The calibrated damage that corresponds to the elastic dynamic discrete load spectra can cover the actual damage at the operating conditions. The calibrated damage satisfies the safety requirement of damage consistency criterion for bogie frame. This research is helpful for investigating the standardized load spectra of bogie frame of high-speed train. 展开更多
关键词 elastic dynamic load spectra finite element method modal deformation calibration bogie frame high-speed train
下载PDF
Numerical Analyses of Caisson Breakwaters on Soft Foundations Under Wave Cyclic Loading 被引量:5
3
作者 王元战 焉振 王禹迟 《China Ocean Engineering》 SCIE EI CSCD 2016年第1期1-18,共18页
A caisson breakwater is built on soft foundations after replacing the upper soft layer with sand. This paper presents a dynamic finite element method to investigate the strength degradation and associated pore pressur... A caisson breakwater is built on soft foundations after replacing the upper soft layer with sand. This paper presents a dynamic finite element method to investigate the strength degradation and associated pore pressure development of the intercalated soft layer under wave cyclic loading. By combining the undrained shear strength with the empirical formula of overconsolidation clay produced by unloading and the development model of pore pressure, the dynamic degradation law that describes the undrained shear strength as a function of cycle number and stress level is derived. Based on the proposed dynamic degradation law and M-C yield criterion, a dynamic finite element method is numerically implemented to predict changes in undrained shear strength of the intercalated soft layer by using the general-purpose FEM software ABAQUS, and the accuracy of the method is verified. The effects of cycle number and amplitude of the wave force on the degradation of the undrained shear strength of the intercalated soft layer and the associated excess pore pressure response are investigated by analyzing an overall distribution and three typical sections underneath the breakwater. By comparing the undrained shear strength distributions obtained by the static method and the quasi-static method with the undrained shear strength distributions obtained by the dynamic finite element method in the three typical sections, the superiority of the dynamic finite element method in predicting changes in undrained shear strength is demonstrated. 展开更多
关键词 soft layer strength degradation pore pressure development wave cyclic loading dynamic finite element method
下载PDF
Design and performance analysis of indoor calibration device for the forcemeasuring system of the tractor three-point hitch
4
作者 Dong Dai Du Chen +4 位作者 Xu Mao Yawei Zhang Yutong Li Shumao Wang Bin Zhang 《International Journal of Agricultural and Biological Engineering》 SCIE 2023年第3期47-54,共8页
The real-time monitoring of the load in farming by the sensor installed on the tractor's three-point hitch can effectively improve the farming efficiency and force-position combined control,reduce the compaction r... The real-time monitoring of the load in farming by the sensor installed on the tractor's three-point hitch can effectively improve the farming efficiency and force-position combined control,reduce the compaction risk of the wheel on the soil and reduce the fuel consumption in farming process.However,the measurement and quantification of the loads on the three-point hitch have some problems remaining unresolved:testing the accuracy and reliability of a load measuring system is hard when the tractor works in a field,the mathematical model of spatial forces usually lacks a practical and effective validation,and the calibration process of the measurement system is inconvenient and incomplete while easily causing a low accuracy.Specifically,this paper builds a new spatial-force mathematical model based on the geometry of a three-point hitch.To eliminate the discrepancy of the geometric model with the actual structure and to refine the mathematical model,a calibration process is conducted by developing a calibration bench,which is equipped with a data acquisition system and a multi-parameter monitoring interface.The three-point hitch installed on this calibration bench is subject to steady-state loading.The loading force,angle of the lower drawbar,and three-component forces(three shaft pin sensors’forces)of the three-point hitch are well measured.With applying for the measured data to calibrate the theoretical mathematic model eventually derives the resultant force from all the three-component forces,a dynamical loading bench was developed to test the calculated resultant force for the three-point hitch during the sinusoidal and randomly variant dynamical loadings tests.A hitch force measurement system is also developed to collect real-time data and calculate the resultant force of measured three-component forces through the calibrated mathematical model.The results of the dynamical loading tests show that the average relative error MRE=1.09%with an average force measurement time delay beingΔt=0.5 s,the root mean square error RMSE=59.3 N,and the coefficient of determination R2=0.9903.As observed,the shape and the trend of the generated resultant force curve are basically the dynamical loading force.The dynamical loading test proves the high efficacy and reliability of the proposed indoor calibration method for calculating the load based on the three-component forces as measured on the three-point hitch.Besides,the preliminary study of the proposed method on the hitch load provides great potential to improve the indoor six-component measurement and quantification of both the force and momentum acting on the three-point hitch. 展开更多
关键词 TRACTOR three-point hitch hitch force calibration bench hitch force measurement system dynamic loading verification method
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部