In this paper, the studies on soil-pile interaction behaviors in saturated sands under static, dynamic and cyclic lateral loads by model testing are described. By comparing with the field test results for piles in sof...In this paper, the studies on soil-pile interaction behaviors in saturated sands under static, dynamic and cyclic lateral loads by model testing are described. By comparing with the field test results for piles in soft sandy clay, a formula of p-y curves based on constitutive relationship of soils applicable for both sandy and soft clays is proposed. Good agreements are obtained in comparison with the field test results performed by other investigators abroad. A p-y hysteresis curve formula based on the modified Masing's doubling criterion is also proposed, and the results are in satisfactory agreement with field test results.展开更多
Theoretically speaking, it is impossible to make the differential equation of motion uncoupled for the natural modes of a system in consideration of the attached water. The hydro-elastic structure is equal to the non-...Theoretically speaking, it is impossible to make the differential equation of motion uncoupled for the natural modes of a system in consideration of the attached water. The hydro-elastic structure is equal to the non-proportional damping system. In this paper a perturbation analysis method is put forward. The structure motion equation is strictly solved mathematically, and the non-proportional damping problem is transformed into a series of proportional damping ones in the superposition form. The paper also presents the calculation formula of the dynamic response of the structure being subjected to harmonic and arbitrary load. The convergence of the proposed method is also studied in this paper, and the corresponding convergence conditions are given. Finally, the proposed method is used to analyze the displacement response of a real offshore platform. The calculation results show that this method has the characteristics of high accuracy and fast convergence.展开更多
文摘In this paper, the studies on soil-pile interaction behaviors in saturated sands under static, dynamic and cyclic lateral loads by model testing are described. By comparing with the field test results for piles in soft sandy clay, a formula of p-y curves based on constitutive relationship of soils applicable for both sandy and soft clays is proposed. Good agreements are obtained in comparison with the field test results performed by other investigators abroad. A p-y hysteresis curve formula based on the modified Masing's doubling criterion is also proposed, and the results are in satisfactory agreement with field test results.
文摘Theoretically speaking, it is impossible to make the differential equation of motion uncoupled for the natural modes of a system in consideration of the attached water. The hydro-elastic structure is equal to the non-proportional damping system. In this paper a perturbation analysis method is put forward. The structure motion equation is strictly solved mathematically, and the non-proportional damping problem is transformed into a series of proportional damping ones in the superposition form. The paper also presents the calculation formula of the dynamic response of the structure being subjected to harmonic and arbitrary load. The convergence of the proposed method is also studied in this paper, and the corresponding convergence conditions are given. Finally, the proposed method is used to analyze the displacement response of a real offshore platform. The calculation results show that this method has the characteristics of high accuracy and fast convergence.