Modulating both the clock frequency and supply voltage of the network-on-chip (NoC) during runtime can reduce the power consumption and heat flux, but will lead to the increase of the latency of NoC. It is necessary...Modulating both the clock frequency and supply voltage of the network-on-chip (NoC) during runtime can reduce the power consumption and heat flux, but will lead to the increase of the latency of NoC. It is necessary to find a tradeoff between power consumption and communication latency. So we propose an analytical latency model which can show us the relationship of them. The proposed model to analyze latency is based on the M/G/1 queuing model, which is suitable for dynamic frequency scaling. The experiment results show that the accuracy of this model is more than 90%.展开更多
基金supported by the National Natural Science Foundation of China under Grant No.61376024 and No.61306024Natural Science Foundation of Guangdong Province under Grant No.S2013040014366Basic Research Programme of Shenzhen No.JCYJ20140417113430642 and JCYJ20140901003939020
文摘Modulating both the clock frequency and supply voltage of the network-on-chip (NoC) during runtime can reduce the power consumption and heat flux, but will lead to the increase of the latency of NoC. It is necessary to find a tradeoff between power consumption and communication latency. So we propose an analytical latency model which can show us the relationship of them. The proposed model to analyze latency is based on the M/G/1 queuing model, which is suitable for dynamic frequency scaling. The experiment results show that the accuracy of this model is more than 90%.