We investigate oscillation of certain second order neutral dynamic equations of Emden-Fowler type with positive and negative coefficients. We use some different techniques and apply Riccati transformation to establish...We investigate oscillation of certain second order neutral dynamic equations of Emden-Fowler type with positive and negative coefficients. We use some different techniques and apply Riccati transformation to establish new oscillatory criteria which include two necessary and sufficient conditions. Moreover, we point out that how the power γ plays its role. Some interesting examples are given to illustrate the versatility of our results.展开更多
By employing the generalized Riccati transformation technique,we will establish some new oscillation criteria and study the asymptotic behavior of the nonoscillatory solutions of the second-order nonlinear neutral del...By employing the generalized Riccati transformation technique,we will establish some new oscillation criteria and study the asymptotic behavior of the nonoscillatory solutions of the second-order nonlinear neutral delay dynamic equation [r(t)[y(t)+p(t)y(■(t))]~Δ]~Δ+q(t)f(y((δ(t)))=0 on a time scale■.The results improve some oscillation results for neutral delay dynamic equations and in the special case when■our results cover and improve the oscillation results for second- order neutral delay differential equations established by Li and Liu[Canad.J.Math.,48(1996), 871 886].When■,our results cover and improve the oscillation results for second order neutral delay difference equations established by Li and Yeh[Comp.Math.Appl.,36(1998),123-132].When ■ ■our results are essentially new.Some examples illustrating our main results are given.展开更多
In this paper, we consider a class of second-order neutral delay dynamic equations on a time scale T. By means of Riccati transformation technique, we establish some new oscillation criteria in two different condition...In this paper, we consider a class of second-order neutral delay dynamic equations on a time scale T. By means of Riccati transformation technique, we establish some new oscillation criteria in two different conditions. The obtained results enrich the well-known oscillation results for some dynamic equations.展开更多
基金supported by National Natural Science Foundation of China (Grant No. 11271379)Guangzhou Postdoctoral Science Research Foundation Project (Grant No. gdbsh2014003)
文摘We investigate oscillation of certain second order neutral dynamic equations of Emden-Fowler type with positive and negative coefficients. We use some different techniques and apply Riccati transformation to establish new oscillatory criteria which include two necessary and sufficient conditions. Moreover, we point out that how the power γ plays its role. Some interesting examples are given to illustrate the versatility of our results.
文摘By employing the generalized Riccati transformation technique,we will establish some new oscillation criteria and study the asymptotic behavior of the nonoscillatory solutions of the second-order nonlinear neutral delay dynamic equation [r(t)[y(t)+p(t)y(■(t))]~Δ]~Δ+q(t)f(y((δ(t)))=0 on a time scale■.The results improve some oscillation results for neutral delay dynamic equations and in the special case when■our results cover and improve the oscillation results for second- order neutral delay differential equations established by Li and Liu[Canad.J.Math.,48(1996), 871 886].When■,our results cover and improve the oscillation results for second order neutral delay difference equations established by Li and Yeh[Comp.Math.Appl.,36(1998),123-132].When ■ ■our results are essentially new.Some examples illustrating our main results are given.
基金supported by the Youth Foundation of Anqing Teachers College(KJ201107)the General Foundation of the Education Department of Anhui Province(AQKJ2014B010)
文摘In this paper, we consider a class of second-order neutral delay dynamic equations on a time scale T. By means of Riccati transformation technique, we establish some new oscillation criteria in two different conditions. The obtained results enrich the well-known oscillation results for some dynamic equations.