The detection of obstacles in a dynamic environment is a hot and difficult problem.A method of autonomously detecting obstacles based on laser radar is proposed as a safety auxiliary structure of tram.The nearest neig...The detection of obstacles in a dynamic environment is a hot and difficult problem.A method of autonomously detecting obstacles based on laser radar is proposed as a safety auxiliary structure of tram.The nearest neighbor method is used for spatial obstacles clustering from laser radar data.By analyzing the characteristics of obstacles,the types of obstacles are determined by time correlation.Experiments were carried out on the developed unmanned aerial vehicle(UAV),and the experimental results verify the effectiveness of the proposed method.展开更多
With the continuous development of robotics and artificial intelligence,robots are being increasingly used in various applications.For traditional navigation algorithms,such as Dijkstra and A*,many dynamic scenarios i...With the continuous development of robotics and artificial intelligence,robots are being increasingly used in various applications.For traditional navigation algorithms,such as Dijkstra and A*,many dynamic scenarios in life are difficult to cope with.To solve the navigation problem of complex dynamic scenes,we present an improved reinforcement-learning-based algorithm for local path planning that allows it to perform well even when more dynamic obstacles are present.The method applies the gmapping algorithm as the upper layer input and uses reinforcement learning methods as the output.The algorithm enhances the robots’ability to actively avoid obstacles while retaining the adaptability of traditional methods.展开更多
This paper focuses on autonomous motion control of a nonholonomic platform with a robotic arm, which is called mobile manipulator. It serves in transportation of loads in imperfectly known industrial environments with...This paper focuses on autonomous motion control of a nonholonomic platform with a robotic arm, which is called mobile manipulator. It serves in transportation of loads in imperfectly known industrial environments with unknown dynamic obstacles. A union of both procedures is used to solve the general problems of collision-free motion. The problem of collision-free motion for mobile manipulators has been approached from two directions, Planning and Reactive Control. The dynamic path planning can be used to solve the problem of locomotion of mobile platform, and reactive approaches can be employed to solve the motion planning of the arm. The execution can generate the commands for the servo-systems of the robot so as to follow a given nominal trajectory while reacting in real-time to unexpected events. The execution can be designed as an Adaptive Fuzzy Neural Controller. In real world systems, sensor-based motion control becomes essential to deal with model uncertainties and unexpected obstacles.展开更多
A common assumption of coverage path planning research is a static environment.Such environments require only a single visit to each area to achieve coverage.However,some real-world environments are characterised by t...A common assumption of coverage path planning research is a static environment.Such environments require only a single visit to each area to achieve coverage.However,some real-world environments are characterised by the presence of unexpected,dynamic obstacles.They require areas to be revisited periodically to maintain an accurate coverage map,as well as reactive obstacle avoidance.This paper proposes a novel swarmbased control algorithm for multi-robot exploration and repeated coverage in environments with unknown,dynamic obstacles.The algorithm combines two elements:frontier-led swarming for driving exploration by a group of robots,and pheromone-based stigmergy for controlling repeated coverage while avoiding obstacles.We tested the performance of our approach on heterogeneous and homogeneous groups of mobile robots in different environments.We measure both repeated coverage performance and obstacle avoidance ability.Through a series of comparison experiments,we demonstrate that our proposed strategy has superior performance to recently presented multi-robot repeated coverage methodologies.展开更多
Dynamic path planning is crucial for mobile robots to navigate successfully in unstructured envi-ronments.To achieve globally optimal path and real-time dynamic obstacle avoidance during the movement,a dynamic path pl...Dynamic path planning is crucial for mobile robots to navigate successfully in unstructured envi-ronments.To achieve globally optimal path and real-time dynamic obstacle avoidance during the movement,a dynamic path planning algorithm incorporating improved IB-RRT∗and deep reinforce-ment learning(DRL)is proposed.Firstly,an improved IB-RRT∗algorithm is proposed for global path planning by combining double elliptic subset sampling and probabilistic central circle target bi-as.Then,to tackle the slow response to dynamic obstacles and inadequate obstacle avoidance of tra-ditional local path planning algorithms,deep reinforcement learning is utilized to predict the move-ment trend of dynamic obstacles,leading to a dynamic fusion path planning.Finally,the simulation and experiment results demonstrate that the proposed improved IB-RRT∗algorithm has higher con-vergence speed and search efficiency compared with traditional Bi-RRT∗,Informed-RRT∗,and IB-RRT∗algorithms.Furthermore,the proposed fusion algorithm can effectively perform real-time obsta-cle avoidance and navigation tasks for mobile robots in unstructured environments.展开更多
A fusion algorithm is proposed to enhance the search speed of an ant colony system(ACS)for the global path planning and overcome the challenges of the local path planning in an unmanned aerial vehicle(UAV).The ACS sea...A fusion algorithm is proposed to enhance the search speed of an ant colony system(ACS)for the global path planning and overcome the challenges of the local path planning in an unmanned aerial vehicle(UAV).The ACS search efficiency is enhanced by adopting a 16-direction 24-neighborhood search way,a safety grid search way,and an elite hybrid strategy to accelerate global convergence.Quadratic planning is performed using the moving average(MA)method.The fusion algorithm incorporates a dynamic window approach(DWA)to deal with the local path planning,sets a retracement mechanism,and adjusts the evaluation function accordingly.Experimental results in two environments demonstrate that the improved ant colony system(IACS)achieves superior planning efficiency.Additionally,the optimized dynamic window approach(ODWA)demonstrates its ability to handle multiple dynamic situations.Overall,the fusion optimization algorithm can accomplish the mixed path planning effectively.展开更多
This work proposes an online collaborative hunting strategy for multi-robot systems based on obstacle-avoiding Voronoi cells in a complex dynamic environment. This involves firstly designing the construction method us...This work proposes an online collaborative hunting strategy for multi-robot systems based on obstacle-avoiding Voronoi cells in a complex dynamic environment. This involves firstly designing the construction method using a support vector machine(SVM) based on the definition of buffered Voronoi cells(BVCs). Based on the safe collision-free region of the robots, the boundary weights between the robots and the obstacles are dynamically updated such that the robots are tangent to the buffered Voronoi safety areas without intersecting with the obstacles. Then, the robots are controlled to move within their own buffered Voronoi safety area to achieve collision-avoidance with other robots and obstacles. The next step involves proposing a hunting method that optimizes collaboration between the pursuers and evaders. Some hunting points are generated and distributed evenly around a circle. Next, the pursuers are assigned to match the optimal points based on the Hungarian algorithm.Then, a hunting controller is designed to improve the containment capability and minimize containment time based on collision risk. Finally, simulation results have demonstrated that the proposed cooperative hunting method is more competitive in terms of time and travel distance.展开更多
Paths planning of Unmanned Aerial Vehicles(UAVs)in a dynamic environment is considered a challenging task in autonomous flight control design.In this work,an efficient method based on a Multi-Objective MultiVerse Opti...Paths planning of Unmanned Aerial Vehicles(UAVs)in a dynamic environment is considered a challenging task in autonomous flight control design.In this work,an efficient method based on a Multi-Objective MultiVerse Optimization(MOMVO)algorithm is proposed and successfully applied to solve the path planning problem of quadrotors with moving obstacles.Such a path planning task is formulated as a multicriteria optimization problem under operational constraints.The proposed MOMVO-based planning approach aims to lead the drone to traverse the shortest path from the starting point and the target without collision with moving obstacles.The vehicle moves to the next position from its current one such that the line joining minimizes the total path length and allows aligning its direction towards the goal.To choose the best compromise solution among all the non-dominated Pareto ones obtained for compromise objectives,the modified Technique for Order Preference by Similarity to Ideal Solution(TOPSIS)is investigated.A set of homologous metaheuristics such as Multiobjective Salp Swarm Algorithm(MSSA),Multi-Objective Grey Wolf Optimizer(MOGWO),Multi-Objective Particle Swarm Optimization(MOPSO),and Non-Dominated Genetic Algorithm II(NSGAII)is used as a basis for the performance comparison.Demonstrative results and statistical analyses show the superiority and effectiveness of the proposed MOMVO-based planning method.The obtained results are satisfactory and encouraging for future practical implementation of the path planning strategy.展开更多
Cooperative path planning is an important area in fixed-wing UAV swarm.However,avoiding multiple timevarying obstacles and avoiding local optimum are two challenges for existing approaches in a dynamic environment.Fir...Cooperative path planning is an important area in fixed-wing UAV swarm.However,avoiding multiple timevarying obstacles and avoiding local optimum are two challenges for existing approaches in a dynamic environment.Firstly,a normalized artificial potential field optimization is proposed by reconstructing a novel function with anisotropy in each dimension,which can make the flight speed of a fixed UAV swarm independent of the repulsive/attractive gain coefficient and avoid trapping into local optimization and local oscillation.Then,taking into account minimum velocity and turning angular velocity of fixed-wing UAV swarm,a strategy of decomposing target vector to avoid moving obstacles and pop-up threats is proposed.Finally,several simulations are carried out to illustrate superiority and effectiveness.展开更多
To solve dynamic obstacle avoidance problems, a novel algorithm was put forward with the advantages of wireless sensor network (WSN). In view of moving velocity and direction of both the obstacles and robots, a mathem...To solve dynamic obstacle avoidance problems, a novel algorithm was put forward with the advantages of wireless sensor network (WSN). In view of moving velocity and direction of both the obstacles and robots, a mathematic model was built based on the exposure model, exposure direction and critical speeds of sensors. Ant colony optimization (ACO) algorithm based on bionic swarm intelligence was used for solution of the multi-objective optimization. Energy consumption and topology of the WSN were also discussed. A practical implementation with real WSN and real mobile robots were carried out. In environment with multiple obstacles, the convergence curve of the shortest path length shows that as iterative generation grows, the length of the shortest path decreases and finally reaches a stable and optimal value. Comparisons show that using sensor information fusion can greatly improve the accuracy in comparison with single sensor. The successful path of robots without collision validates the efficiency, stability and accuracy of the proposed algorithm, which is proved to be better than tradition genetic algorithm (GA) for dynamic obstacle avoidance in real time.展开更多
A new path planning method for mobile robots in globally unknown environment with moving obstacles is pre- sented. With an autoregressive (AR) model to predict the future positions of moving obstacles, and the predict...A new path planning method for mobile robots in globally unknown environment with moving obstacles is pre- sented. With an autoregressive (AR) model to predict the future positions of moving obstacles, and the predicted position taken as the next position of moving obstacles, a motion path in dynamic uncertain environment is planned by means of an on-line real-time path planning technique based on polar coordinates in which the desirable direction angle is taken into consideration as an optimization index. The effectiveness, feasibility, high stability, perfect performance of obstacle avoidance, real-time and optimization capability are demonstrated by simulation examples.展开更多
In the game, we generally use A* algorithm for pathfinding according to the target location and map information to realize the tracking and interception task. This approach is simple to implement, but is often less th...In the game, we generally use A* algorithm for pathfinding according to the target location and map information to realize the tracking and interception task. This approach is simple to implement, but is often less than ideal in its presentation, because it does not allow game units to predictably choose paths based on dynamic targets or obstacles, and may lead to blocked channels or difficulty in choosing the actual optimal path. This paper focuses on analyzing the need of a unit when intercepting another unit in the game, and make an interception scheme which can adapt itself to dynamic obstacles and moving target thus presents artificial intelligence to some extent.展开更多
Selecting the optimal speed for dynamic obstacle avoidance in complex man–machine environments is a challenging problem for mobile robots inspecting hazardous gases.Consideration of personal space is important,especi...Selecting the optimal speed for dynamic obstacle avoidance in complex man–machine environments is a challenging problem for mobile robots inspecting hazardous gases.Consideration of personal space is important,especially in a relatively narrow man–machine dynamic environments such as warehouses and laboratories.In this study,human and robot behaviors in man–machine environments are analyzed,and a man–machine social force model is established to study the robot obstacle avoidance speed.Four typical man–machine behavior patterns are investigated to design the robot behavior strategy.Based on the social force model and man–machine behavior patterns,the fuzzy-PID trajectory tracking control method and the autonomous obstacle avoidance behavior strategy of the mobile robot in inspecting hazardous gases in a relatively narrow man–machine dynamic environment are proposed to determine the optimal robot speed for obstacle avoidance.The simulation analysis results show that compared with the traditional PID control method,the proposed controller has a position error of less than 0.098 m,an angle error of less than 0.088 rad,a smaller steady-state error,and a shorter convergence time.The crossing and encountering pattern experiment results show that the proposed behavior strategy ensures that the robot maintains a safe distance from humans while performing trajectory tracking.This research proposes a combination autonomous behavior strategy for mobile robots inspecting hazardous gases,ensuring that the robot maintains the optimal speed to achieve dynamic obstacle avoidance,reducing human anxiety and increasing comfort in a relatively narrow man–machine environment.展开更多
While different species in nature have safely solved the problem of navigation in a dynamic environment, this remains a challenging task for researchers around the world. The paper addresses the problem of autonomous ...While different species in nature have safely solved the problem of navigation in a dynamic environment, this remains a challenging task for researchers around the world. The paper addresses the problem of autonomous navigation in an unknown dynamic environment for a single and a group of three wheeled omnidirectional mobile robots(TWOMRs). The robot has to track a dynamic target while avoiding dynamic obstacles and dynamic walls in an unknown and very dense environment. It adopts a behavior-based controller that consists of four behaviors: "target tracking", "obstacle avoidance", "dynamic wall following" and "avoid robots". The paper considers the problem of kinematic saturation. In addition, it introduces a strategy for predicting the velocity of dynamic obstacles based on two successive measurements of the ultrasonic sensors to calculate the velocity of the obstacle expressed in the sensor frame. Furthermore, the paper proposes a strategy to deal with dynamic walls even when they have U-like or V-like shapes. The approach can also deal with the formation control of a group of robots based on the leader-follower structure and the behavior-based control, where the robots have to get together and maintain a given formation while navigating toward the target, avoiding obstacles and walls in a dynamic environment. The effectiveness of the proposed approaches is demonstrated via simulation.展开更多
Purpose–The motion control of unmanned ground vehicles(UGV)is a challenge in the industry of automation.The purpose of this paper is to propose a fuzzy inference system(FIS)based on sensory information for solving th...Purpose–The motion control of unmanned ground vehicles(UGV)is a challenge in the industry of automation.The purpose of this paper is to propose a fuzzy inference system(FIS)based on sensory information for solving the navigation challenge of UGV in cluttered and dynamic environments.Design/methodology/approach–The representation of the dynamic environment is a key element for the operational field and for the testing of the robotic navigation system.If dynamic obstacles move randomly in the operation field,the navigation problem becomes more complicated due to the coordination of the elements for accurate navigation and collision-free path within the environmental representations.This paper considers the construction of the FIS,which consists of two controllers.The first controller uses three sensors based on the obstacles distances from the front,right and left.The second controller employs the angle difference between the heading of the vehicle and the targeted angle to obtain the optimal route based on the environment and reach the desired destination with minimal running power and delay.The proposed design shows an efficient navigation strategy that overcomes the current navigation challenges in dynamic environments.Findings–Experimental analyses are conducted for three different scenarios to investigate the validation and effectiveness of the introduced controllers based on the FIS.The reported simulation results are obtained using MATLAB software package.The results show that the controllers of the FIS consistently perform the manoeuvring task and manage the route plan efficiently,even in a complex environment that is populated with dynamic obstacles.The paper demonstrates that the destination was reached optimally using the shortest free route.Research limitations/implications–The paper represents efforts toward building a dynamic environment filled with dynamic obstacles that move at various speeds and directions.The methodology of designing the FIS is accomplished to guide the UGV to the desired destination while avoiding collisions with obstacles.However,the methodology is approached using two-dimensional analyses.Hence,the paper suggests several extensions and variations to develop a three-dimensional strategy for further improvement.Originality/value–This paper presents the design of a FIS and its characterizations in dynamic environments,specifically for obstacles that move at different velocities.This facilitates an improved functionality of the operation of UGV.展开更多
An dynamic system for real-time obstacle avoidance path planning of redundant robots is constructed in this paper. Firstly, the inter-frame difference method is used to identify the moving target and to calculate the ...An dynamic system for real-time obstacle avoidance path planning of redundant robots is constructed in this paper. Firstly, the inter-frame difference method is used to identify the moving target and to calculate the target area, then on the basis of color features and gradient features extracted from the target area, the feature fusion Cam-Shift mean shift algorithm is used to track target, improving the robustness of the tracking algorithm. Secondly, a parallel two-channel target identification and location method based on binocular vision is proposed, updating the target's three-dimensional information in real time. Then, a dynamic collision-free path planning method is implemented: the safety rods are removed through the intersection test, and the minimum distance is derived directly by using the coordinate values of the target in the local coordinate system of the rod. On this basis, the obstacle avoidance gain and escape velocity related to the minimum distance is established, and obstacle avoidance path planning is implemented by using the zero space mapping matrix of redundant robot. Experiments are performed to Study the efficiency of the proposed system.展开更多
This paper proposes a method for planning the three-dimensional path for low-flying unmanned aerial vehicle(UAV) in complex terrain based on interfered fluid dynamical system(IFDS) and the theory of obstacle avoid...This paper proposes a method for planning the three-dimensional path for low-flying unmanned aerial vehicle(UAV) in complex terrain based on interfered fluid dynamical system(IFDS) and the theory of obstacle avoidance by the flowing stream. With no requirement of solutions to fluid equations under complex boundary conditions, the proposed method is suitable for situations with complex terrain and different shapes of obstacles. Firstly, by transforming the mountains, radar and anti-aircraft fire in complex terrain into cylindrical, conical, spherical, parallelepiped obstacles and their combinations, the 3D low-flying path planning problem is turned into solving streamlines for obstacle avoidance by fluid flow. Secondly, on the basis of a unified mathematical expression of typical obstacle shapes including sphere, cylinder, cone and parallelepiped, the modulation matrix for interfered fluid dynamical system is constructed and 3D streamlines around a single obstacle are obtained. Solutions to streamlines with multiple obstacles are then derived using weighted average of the velocity field. Thirdly, extra control force method and virtual obstacle method are proposed to deal with the stagnation point and the case of obstacles' overlapping respectively. Finally, taking path length and flight height as sub-goals, genetic algorithm(GA) is used to obtain optimal 3D path under the maneuverability constraints of the UAV. Simulation results show that the environmental modeling is simple and the path is smooth and suitable for UAV. Theoretical proof is also presented to show that the proposed method has no effect on the characteristics of fluid avoiding obstacles.展开更多
For safety reasons,in the automated dispensing medicines process,robots and humans cooperate to accomplish the task of drug sorting and distribution.In this dynamic unstructured environment,such as a humanrobot collab...For safety reasons,in the automated dispensing medicines process,robots and humans cooperate to accomplish the task of drug sorting and distribution.In this dynamic unstructured environment,such as a humanrobot collaboration scenario,the safety of human,robot,and equipment in the environment is paramount.In this work,a practical and effective robot motion planning method is proposed for dynamic unstructured environments.To figure out the problems of blind zones of single depth sensor and dynamic obstacle avoidance,we first propose a method for establishing offline mapping and online fusion of multi-sensor depth images and 3D grids of the robot workspace,which is used to determine the occupation states of the 3D grids occluded by robots and obstacles and to conduct real-time estimation of the minimum distance between the robot and obstacles.Then,based on the reactive control method,the attractive and repulsive forces are calculated and transformed into robot joint velocities to avoid obstacles in real time.Finally,the robot’s dynamic obstacle avoidance ability is evaluated on an experimental platform with a UR5 robot and two KinectV2 RGB-D sensors,and the effectiveness of the proposed method is verified.展开更多
Purpose-In response to these shortcomings,this paper proposes a dynamic obstacle detection and tracking method based on multi-feature fusion and a dynamic obstacle recognition method based on spatio-temporal feature v...Purpose-In response to these shortcomings,this paper proposes a dynamic obstacle detection and tracking method based on multi-feature fusion and a dynamic obstacle recognition method based on spatio-temporal feature vectors.Design/methodology/approach-The existing dynamic obstacle detection and tracking methods based on geometric features have a high false detection rate.The recognition methods based on the geometric features and motion status of dynamic obstacles are greatly affected by distance and scanning angle,and cannot meet the requirements of real traffic scene applications.Findings-First,based on the geometric features of dynamic obstacles,the obstacles are considered The echo pulse width feature is used to improve the accuracy of obstacle detection and tracking;second,the space-time feature vector is constructed based on the time dimension and space dimension information of the obstacle,and then the support vector machine method is used to realize the recognition of dynamic obstacles to improve the obstacle The accuracy of object recognition.Finally,the accuracy and effectiveness of the proposed method are verified by real vehicle tests.Originality/value-The paper proposes a dynamic obstacle detection and tracking method based on multi-feature fusion and a dynamic obstacle recognition method based on spatio-temporal feature vectors.The accuracy and effectiveness of the proposed method are verified by real vehicle tests.展开更多
To achieve the collision-free trajectory tracking of the four-wheeled mobile robot(FMR),existing methods resolve the tracking control and obstacle avoidance separately.Guaranteeing the synergistic robustness and smoot...To achieve the collision-free trajectory tracking of the four-wheeled mobile robot(FMR),existing methods resolve the tracking control and obstacle avoidance separately.Guaranteeing the synergistic robustness and smooth navigation of mobile robots subjected to motion uncertainties in a dynamic environment using this non-cooperative processing method is difficult.To address this challenge,this paper proposes an obstacle-circumventing adaptive control(OCAC)framework.Specifically,a novel anti-disturbance terminal slide mode control with adaptive gains is formulated,incorporating specified control laws for different stages.This formulation guarantees rapid convergence and simultaneous chattering elimination.By introducing sub-target points,a new sub-target dynamic tracking regression obstacle avoidance strategy is presented to transfer the obstacle avoidance problem into a dynamic tracking one,thereby reducing the burden of local path searching while ensuring system stability during obstacle circumvention.Comparative experiments demonstrate that the proposed OCAC method can strengthen the convergence and obstacle avoidance efficiency of the concerned FMR system.展开更多
基金National Key R&D Program of China(No.2017YFB1201003-020)Science and Technology Project of Gansu Education Department(No.2015B-041)
文摘The detection of obstacles in a dynamic environment is a hot and difficult problem.A method of autonomously detecting obstacles based on laser radar is proposed as a safety auxiliary structure of tram.The nearest neighbor method is used for spatial obstacles clustering from laser radar data.By analyzing the characteristics of obstacles,the types of obstacles are determined by time correlation.Experiments were carried out on the developed unmanned aerial vehicle(UAV),and the experimental results verify the effectiveness of the proposed method.
基金supported in part by the National Key Research and Development Project of China(No.2019YFB2102500)the Natural Science Foundation of Hebei Province(No.F2018201115).
文摘With the continuous development of robotics and artificial intelligence,robots are being increasingly used in various applications.For traditional navigation algorithms,such as Dijkstra and A*,many dynamic scenarios in life are difficult to cope with.To solve the navigation problem of complex dynamic scenes,we present an improved reinforcement-learning-based algorithm for local path planning that allows it to perform well even when more dynamic obstacles are present.The method applies the gmapping algorithm as the upper layer input and uses reinforcement learning methods as the output.The algorithm enhances the robots’ability to actively avoid obstacles while retaining the adaptability of traditional methods.
文摘This paper focuses on autonomous motion control of a nonholonomic platform with a robotic arm, which is called mobile manipulator. It serves in transportation of loads in imperfectly known industrial environments with unknown dynamic obstacles. A union of both procedures is used to solve the general problems of collision-free motion. The problem of collision-free motion for mobile manipulators has been approached from two directions, Planning and Reactive Control. The dynamic path planning can be used to solve the problem of locomotion of mobile platform, and reactive approaches can be employed to solve the motion planning of the arm. The execution can generate the commands for the servo-systems of the robot so as to follow a given nominal trajectory while reacting in real-time to unexpected events. The execution can be designed as an Adaptive Fuzzy Neural Controller. In real world systems, sensor-based motion control becomes essential to deal with model uncertainties and unexpected obstacles.
基金supported by the DEFENCE SCIENCE&TECHNOLOGY GROUP(DSTG)(9729)The Commonwealth of Australia supported this research through a Defence Science Partnerships agreement with the Australian Defence Science and Technology Group。
文摘A common assumption of coverage path planning research is a static environment.Such environments require only a single visit to each area to achieve coverage.However,some real-world environments are characterised by the presence of unexpected,dynamic obstacles.They require areas to be revisited periodically to maintain an accurate coverage map,as well as reactive obstacle avoidance.This paper proposes a novel swarmbased control algorithm for multi-robot exploration and repeated coverage in environments with unknown,dynamic obstacles.The algorithm combines two elements:frontier-led swarming for driving exploration by a group of robots,and pheromone-based stigmergy for controlling repeated coverage while avoiding obstacles.We tested the performance of our approach on heterogeneous and homogeneous groups of mobile robots in different environments.We measure both repeated coverage performance and obstacle avoidance ability.Through a series of comparison experiments,we demonstrate that our proposed strategy has superior performance to recently presented multi-robot repeated coverage methodologies.
基金the National Natural Science Foundation of China(No.61973275)。
文摘Dynamic path planning is crucial for mobile robots to navigate successfully in unstructured envi-ronments.To achieve globally optimal path and real-time dynamic obstacle avoidance during the movement,a dynamic path planning algorithm incorporating improved IB-RRT∗and deep reinforce-ment learning(DRL)is proposed.Firstly,an improved IB-RRT∗algorithm is proposed for global path planning by combining double elliptic subset sampling and probabilistic central circle target bi-as.Then,to tackle the slow response to dynamic obstacles and inadequate obstacle avoidance of tra-ditional local path planning algorithms,deep reinforcement learning is utilized to predict the move-ment trend of dynamic obstacles,leading to a dynamic fusion path planning.Finally,the simulation and experiment results demonstrate that the proposed improved IB-RRT∗algorithm has higher con-vergence speed and search efficiency compared with traditional Bi-RRT∗,Informed-RRT∗,and IB-RRT∗algorithms.Furthermore,the proposed fusion algorithm can effectively perform real-time obsta-cle avoidance and navigation tasks for mobile robots in unstructured environments.
基金National Natural Science Foundation of China(No.62241503)Natural Science Foundation of Shanghai,China(No.22ZR1401400)。
文摘A fusion algorithm is proposed to enhance the search speed of an ant colony system(ACS)for the global path planning and overcome the challenges of the local path planning in an unmanned aerial vehicle(UAV).The ACS search efficiency is enhanced by adopting a 16-direction 24-neighborhood search way,a safety grid search way,and an elite hybrid strategy to accelerate global convergence.Quadratic planning is performed using the moving average(MA)method.The fusion algorithm incorporates a dynamic window approach(DWA)to deal with the local path planning,sets a retracement mechanism,and adjusts the evaluation function accordingly.Experimental results in two environments demonstrate that the improved ant colony system(IACS)achieves superior planning efficiency.Additionally,the optimized dynamic window approach(ODWA)demonstrates its ability to handle multiple dynamic situations.Overall,the fusion optimization algorithm can accomplish the mixed path planning effectively.
基金supported by the National Natural Science Foundation of China (62273007,61973023)Project of Cultivation for Young Top-motch Talents of Beijing Municipal Institutions (BPHR202203032)。
文摘This work proposes an online collaborative hunting strategy for multi-robot systems based on obstacle-avoiding Voronoi cells in a complex dynamic environment. This involves firstly designing the construction method using a support vector machine(SVM) based on the definition of buffered Voronoi cells(BVCs). Based on the safe collision-free region of the robots, the boundary weights between the robots and the obstacles are dynamically updated such that the robots are tangent to the buffered Voronoi safety areas without intersecting with the obstacles. Then, the robots are controlled to move within their own buffered Voronoi safety area to achieve collision-avoidance with other robots and obstacles. The next step involves proposing a hunting method that optimizes collaboration between the pursuers and evaders. Some hunting points are generated and distributed evenly around a circle. Next, the pursuers are assigned to match the optimal points based on the Hungarian algorithm.Then, a hunting controller is designed to improve the containment capability and minimize containment time based on collision risk. Finally, simulation results have demonstrated that the proposed cooperative hunting method is more competitive in terms of time and travel distance.
文摘Paths planning of Unmanned Aerial Vehicles(UAVs)in a dynamic environment is considered a challenging task in autonomous flight control design.In this work,an efficient method based on a Multi-Objective MultiVerse Optimization(MOMVO)algorithm is proposed and successfully applied to solve the path planning problem of quadrotors with moving obstacles.Such a path planning task is formulated as a multicriteria optimization problem under operational constraints.The proposed MOMVO-based planning approach aims to lead the drone to traverse the shortest path from the starting point and the target without collision with moving obstacles.The vehicle moves to the next position from its current one such that the line joining minimizes the total path length and allows aligning its direction towards the goal.To choose the best compromise solution among all the non-dominated Pareto ones obtained for compromise objectives,the modified Technique for Order Preference by Similarity to Ideal Solution(TOPSIS)is investigated.A set of homologous metaheuristics such as Multiobjective Salp Swarm Algorithm(MSSA),Multi-Objective Grey Wolf Optimizer(MOGWO),Multi-Objective Particle Swarm Optimization(MOPSO),and Non-Dominated Genetic Algorithm II(NSGAII)is used as a basis for the performance comparison.Demonstrative results and statistical analyses show the superiority and effectiveness of the proposed MOMVO-based planning method.The obtained results are satisfactory and encouraging for future practical implementation of the path planning strategy.
文摘Cooperative path planning is an important area in fixed-wing UAV swarm.However,avoiding multiple timevarying obstacles and avoiding local optimum are two challenges for existing approaches in a dynamic environment.Firstly,a normalized artificial potential field optimization is proposed by reconstructing a novel function with anisotropy in each dimension,which can make the flight speed of a fixed UAV swarm independent of the repulsive/attractive gain coefficient and avoid trapping into local optimization and local oscillation.Then,taking into account minimum velocity and turning angular velocity of fixed-wing UAV swarm,a strategy of decomposing target vector to avoid moving obstacles and pop-up threats is proposed.Finally,several simulations are carried out to illustrate superiority and effectiveness.
基金Project(60475035) supported by the National Natural Science Foundation of China
文摘To solve dynamic obstacle avoidance problems, a novel algorithm was put forward with the advantages of wireless sensor network (WSN). In view of moving velocity and direction of both the obstacles and robots, a mathematic model was built based on the exposure model, exposure direction and critical speeds of sensors. Ant colony optimization (ACO) algorithm based on bionic swarm intelligence was used for solution of the multi-objective optimization. Energy consumption and topology of the WSN were also discussed. A practical implementation with real WSN and real mobile robots were carried out. In environment with multiple obstacles, the convergence curve of the shortest path length shows that as iterative generation grows, the length of the shortest path decreases and finally reaches a stable and optimal value. Comparisons show that using sensor information fusion can greatly improve the accuracy in comparison with single sensor. The successful path of robots without collision validates the efficiency, stability and accuracy of the proposed algorithm, which is proved to be better than tradition genetic algorithm (GA) for dynamic obstacle avoidance in real time.
文摘A new path planning method for mobile robots in globally unknown environment with moving obstacles is pre- sented. With an autoregressive (AR) model to predict the future positions of moving obstacles, and the predicted position taken as the next position of moving obstacles, a motion path in dynamic uncertain environment is planned by means of an on-line real-time path planning technique based on polar coordinates in which the desirable direction angle is taken into consideration as an optimization index. The effectiveness, feasibility, high stability, perfect performance of obstacle avoidance, real-time and optimization capability are demonstrated by simulation examples.
文摘In the game, we generally use A* algorithm for pathfinding according to the target location and map information to realize the tracking and interception task. This approach is simple to implement, but is often less than ideal in its presentation, because it does not allow game units to predictably choose paths based on dynamic targets or obstacles, and may lead to blocked channels or difficulty in choosing the actual optimal path. This paper focuses on analyzing the need of a unit when intercepting another unit in the game, and make an interception scheme which can adapt itself to dynamic obstacles and moving target thus presents artificial intelligence to some extent.
基金Research and Development Program of Xi’an Modern Chemistry Research Institute of Chnia(Grant No.204J201916234/6)Key Project of Liuzhou Science and Technology Bureau of China(Grant No.2020PAAA0601).
文摘Selecting the optimal speed for dynamic obstacle avoidance in complex man–machine environments is a challenging problem for mobile robots inspecting hazardous gases.Consideration of personal space is important,especially in a relatively narrow man–machine dynamic environments such as warehouses and laboratories.In this study,human and robot behaviors in man–machine environments are analyzed,and a man–machine social force model is established to study the robot obstacle avoidance speed.Four typical man–machine behavior patterns are investigated to design the robot behavior strategy.Based on the social force model and man–machine behavior patterns,the fuzzy-PID trajectory tracking control method and the autonomous obstacle avoidance behavior strategy of the mobile robot in inspecting hazardous gases in a relatively narrow man–machine dynamic environment are proposed to determine the optimal robot speed for obstacle avoidance.The simulation analysis results show that compared with the traditional PID control method,the proposed controller has a position error of less than 0.098 m,an angle error of less than 0.088 rad,a smaller steady-state error,and a shorter convergence time.The crossing and encountering pattern experiment results show that the proposed behavior strategy ensures that the robot maintains a safe distance from humans while performing trajectory tracking.This research proposes a combination autonomous behavior strategy for mobile robots inspecting hazardous gases,ensuring that the robot maintains the optimal speed to achieve dynamic obstacle avoidance,reducing human anxiety and increasing comfort in a relatively narrow man–machine environment.
文摘While different species in nature have safely solved the problem of navigation in a dynamic environment, this remains a challenging task for researchers around the world. The paper addresses the problem of autonomous navigation in an unknown dynamic environment for a single and a group of three wheeled omnidirectional mobile robots(TWOMRs). The robot has to track a dynamic target while avoiding dynamic obstacles and dynamic walls in an unknown and very dense environment. It adopts a behavior-based controller that consists of four behaviors: "target tracking", "obstacle avoidance", "dynamic wall following" and "avoid robots". The paper considers the problem of kinematic saturation. In addition, it introduces a strategy for predicting the velocity of dynamic obstacles based on two successive measurements of the ultrasonic sensors to calculate the velocity of the obstacle expressed in the sensor frame. Furthermore, the paper proposes a strategy to deal with dynamic walls even when they have U-like or V-like shapes. The approach can also deal with the formation control of a group of robots based on the leader-follower structure and the behavior-based control, where the robots have to get together and maintain a given formation while navigating toward the target, avoiding obstacles and walls in a dynamic environment. The effectiveness of the proposed approaches is demonstrated via simulation.
文摘Purpose–The motion control of unmanned ground vehicles(UGV)is a challenge in the industry of automation.The purpose of this paper is to propose a fuzzy inference system(FIS)based on sensory information for solving the navigation challenge of UGV in cluttered and dynamic environments.Design/methodology/approach–The representation of the dynamic environment is a key element for the operational field and for the testing of the robotic navigation system.If dynamic obstacles move randomly in the operation field,the navigation problem becomes more complicated due to the coordination of the elements for accurate navigation and collision-free path within the environmental representations.This paper considers the construction of the FIS,which consists of two controllers.The first controller uses three sensors based on the obstacles distances from the front,right and left.The second controller employs the angle difference between the heading of the vehicle and the targeted angle to obtain the optimal route based on the environment and reach the desired destination with minimal running power and delay.The proposed design shows an efficient navigation strategy that overcomes the current navigation challenges in dynamic environments.Findings–Experimental analyses are conducted for three different scenarios to investigate the validation and effectiveness of the introduced controllers based on the FIS.The reported simulation results are obtained using MATLAB software package.The results show that the controllers of the FIS consistently perform the manoeuvring task and manage the route plan efficiently,even in a complex environment that is populated with dynamic obstacles.The paper demonstrates that the destination was reached optimally using the shortest free route.Research limitations/implications–The paper represents efforts toward building a dynamic environment filled with dynamic obstacles that move at various speeds and directions.The methodology of designing the FIS is accomplished to guide the UGV to the desired destination while avoiding collisions with obstacles.However,the methodology is approached using two-dimensional analyses.Hence,the paper suggests several extensions and variations to develop a three-dimensional strategy for further improvement.Originality/value–This paper presents the design of a FIS and its characterizations in dynamic environments,specifically for obstacles that move at different velocities.This facilitates an improved functionality of the operation of UGV.
基金supported in part by the Key Project of Chinese National Programs for Fundamental Research and Development(973program)(2013CB73300)National Natural Science Foundation of China(61573066)
文摘An dynamic system for real-time obstacle avoidance path planning of redundant robots is constructed in this paper. Firstly, the inter-frame difference method is used to identify the moving target and to calculate the target area, then on the basis of color features and gradient features extracted from the target area, the feature fusion Cam-Shift mean shift algorithm is used to track target, improving the robustness of the tracking algorithm. Secondly, a parallel two-channel target identification and location method based on binocular vision is proposed, updating the target's three-dimensional information in real time. Then, a dynamic collision-free path planning method is implemented: the safety rods are removed through the intersection test, and the minimum distance is derived directly by using the coordinate values of the target in the local coordinate system of the rod. On this basis, the obstacle avoidance gain and escape velocity related to the minimum distance is established, and obstacle avoidance path planning is implemented by using the zero space mapping matrix of redundant robot. Experiments are performed to Study the efficiency of the proposed system.
基金supported by the National Natural Science Foundation of China(No.61175084)
文摘This paper proposes a method for planning the three-dimensional path for low-flying unmanned aerial vehicle(UAV) in complex terrain based on interfered fluid dynamical system(IFDS) and the theory of obstacle avoidance by the flowing stream. With no requirement of solutions to fluid equations under complex boundary conditions, the proposed method is suitable for situations with complex terrain and different shapes of obstacles. Firstly, by transforming the mountains, radar and anti-aircraft fire in complex terrain into cylindrical, conical, spherical, parallelepiped obstacles and their combinations, the 3D low-flying path planning problem is turned into solving streamlines for obstacle avoidance by fluid flow. Secondly, on the basis of a unified mathematical expression of typical obstacle shapes including sphere, cylinder, cone and parallelepiped, the modulation matrix for interfered fluid dynamical system is constructed and 3D streamlines around a single obstacle are obtained. Solutions to streamlines with multiple obstacles are then derived using weighted average of the velocity field. Thirdly, extra control force method and virtual obstacle method are proposed to deal with the stagnation point and the case of obstacles' overlapping respectively. Finally, taking path length and flight height as sub-goals, genetic algorithm(GA) is used to obtain optimal 3D path under the maneuverability constraints of the UAV. Simulation results show that the environmental modeling is simple and the path is smooth and suitable for UAV. Theoretical proof is also presented to show that the proposed method has no effect on the characteristics of fluid avoiding obstacles.
基金the Interdisciplinary Program of Shanghai Jiao Tong University(No.YG2019QNA25)。
文摘For safety reasons,in the automated dispensing medicines process,robots and humans cooperate to accomplish the task of drug sorting and distribution.In this dynamic unstructured environment,such as a humanrobot collaboration scenario,the safety of human,robot,and equipment in the environment is paramount.In this work,a practical and effective robot motion planning method is proposed for dynamic unstructured environments.To figure out the problems of blind zones of single depth sensor and dynamic obstacle avoidance,we first propose a method for establishing offline mapping and online fusion of multi-sensor depth images and 3D grids of the robot workspace,which is used to determine the occupation states of the 3D grids occluded by robots and obstacles and to conduct real-time estimation of the minimum distance between the robot and obstacles.Then,based on the reactive control method,the attractive and repulsive forces are calculated and transformed into robot joint velocities to avoid obstacles in real time.Finally,the robot’s dynamic obstacle avoidance ability is evaluated on an experimental platform with a UR5 robot and two KinectV2 RGB-D sensors,and the effectiveness of the proposed method is verified.
文摘Purpose-In response to these shortcomings,this paper proposes a dynamic obstacle detection and tracking method based on multi-feature fusion and a dynamic obstacle recognition method based on spatio-temporal feature vectors.Design/methodology/approach-The existing dynamic obstacle detection and tracking methods based on geometric features have a high false detection rate.The recognition methods based on the geometric features and motion status of dynamic obstacles are greatly affected by distance and scanning angle,and cannot meet the requirements of real traffic scene applications.Findings-First,based on the geometric features of dynamic obstacles,the obstacles are considered The echo pulse width feature is used to improve the accuracy of obstacle detection and tracking;second,the space-time feature vector is constructed based on the time dimension and space dimension information of the obstacle,and then the support vector machine method is used to realize the recognition of dynamic obstacles to improve the obstacle The accuracy of object recognition.Finally,the accuracy and effectiveness of the proposed method are verified by real vehicle tests.Originality/value-The paper proposes a dynamic obstacle detection and tracking method based on multi-feature fusion and a dynamic obstacle recognition method based on spatio-temporal feature vectors.The accuracy and effectiveness of the proposed method are verified by real vehicle tests.
基金supported in part by the National Natural Science Foundation of China(Grant Nos.52275488 and 52105019)in part by the Key R&D Program of Hubei Province,China(Grant No.2022BAA064)in part by Dongguan Social Development Project,China(Grant No.20211800904902).
文摘To achieve the collision-free trajectory tracking of the four-wheeled mobile robot(FMR),existing methods resolve the tracking control and obstacle avoidance separately.Guaranteeing the synergistic robustness and smooth navigation of mobile robots subjected to motion uncertainties in a dynamic environment using this non-cooperative processing method is difficult.To address this challenge,this paper proposes an obstacle-circumventing adaptive control(OCAC)framework.Specifically,a novel anti-disturbance terminal slide mode control with adaptive gains is formulated,incorporating specified control laws for different stages.This formulation guarantees rapid convergence and simultaneous chattering elimination.By introducing sub-target points,a new sub-target dynamic tracking regression obstacle avoidance strategy is presented to transfer the obstacle avoidance problem into a dynamic tracking one,thereby reducing the burden of local path searching while ensuring system stability during obstacle circumvention.Comparative experiments demonstrate that the proposed OCAC method can strengthen the convergence and obstacle avoidance efficiency of the concerned FMR system.