期刊文献+
共找到117篇文章
< 1 2 6 >
每页显示 20 50 100
Dynamic plugging regulating strategy of pipeline robot based on reinforcement learning
1
作者 Xing-Yuan Miao Hong Zhao 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期597-608,共12页
Pipeline isolation plugging robot (PIPR) is an important tool in pipeline maintenance operation. During the plugging process, the violent vibration will occur by the flow field, which can cause serious damage to the p... Pipeline isolation plugging robot (PIPR) is an important tool in pipeline maintenance operation. During the plugging process, the violent vibration will occur by the flow field, which can cause serious damage to the pipeline and PIPR. In this paper, we propose a dynamic regulating strategy to reduce the plugging-induced vibration by regulating the spoiler angle and plugging velocity. Firstly, the dynamic plugging simulation and experiment are performed to study the flow field changes during dynamic plugging. And the pressure difference is proposed to evaluate the degree of flow field vibration. Secondly, the mathematical models of pressure difference with plugging states and spoiler angles are established based on the extreme learning machine (ELM) optimized by improved sparrow search algorithm (ISSA). Finally, a modified Q-learning algorithm based on simulated annealing is applied to determine the optimal strategy for the spoiler angle and plugging velocity in real time. The results show that the proposed method can reduce the plugging-induced vibration by 19.9% and 32.7% on average, compared with single-regulating methods. This study can effectively ensure the stability of the plugging process. 展开更多
关键词 Pipeline isolation plugging robot Plugging-induced vibration dynamic regulating strategy Extreme learning machine Improved sparrow search algorithm Modified Q-learning algorithm
下载PDF
A Complexity Theory Perspective on the Dynamics of Second Language Learning Strategies and the Theoretical Implications
2
作者 黄智广 江思华 +3 位作者 杨晓焱 卢家惠 罗嫦奔 何小清 《海外英语》 2021年第7期269-271,共3页
This paper presents a qualitative study to investigate the dynamics in second language(L2)learning strategies under the guidance of the complexity theory.A group of Chinese undergraduate students studying at an intern... This paper presents a qualitative study to investigate the dynamics in second language(L2)learning strategies under the guidance of the complexity theory.A group of Chinese undergraduate students studying at an international university in Thailand were selected as the research participants.Research instruments include interviews,observations,records of participants’on-line chat and posts,and a research journal.The research findings indicate that the changes in the participants’strategies for learning English exhibit typical features of the complex system.The study will provide implications for probing into the nature of L2 strategy and for applying complexity theory to future researches on L2 strategies. 展开更多
关键词 second language learning strategies complexity theory complex system dynamicS
下载PDF
Dynamic Pricing Model of E-Commerce Platforms Based on Deep Reinforcement Learning 被引量:1
3
作者 Chunli Yin Jinglong Han 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第4期291-307,共17页
With the continuous development of artificial intelligence technology,its application field has gradually expanded.To further apply the deep reinforcement learning technology to the field of dynamic pricing,we build a... With the continuous development of artificial intelligence technology,its application field has gradually expanded.To further apply the deep reinforcement learning technology to the field of dynamic pricing,we build an intelligent dynamic pricing system,introduce the reinforcement learning technology related to dynamic pricing,and introduce existing research on the number of suppliers(single supplier and multiple suppliers),environmental models,and selection algorithms.A two-period dynamic pricing game model is designed to assess the optimal pricing strategy for e-commerce platforms under two market conditions and two consumer participation conditions.The first step is to analyze the pricing strategies of e-commerce platforms in mature markets,analyze the optimal pricing and profits of various enterprises under different strategy combinations,compare different market equilibriums and solve the Nash equilibrium.Then,assuming that all consumers are naive in the market,the pricing strategy of the duopoly e-commerce platform in emerging markets is analyzed.By comparing and analyzing the optimal pricing and total profit of each enterprise under different strategy combinations,the subgame refined Nash equilibrium is solved.Finally,assuming that the market includes all experienced consumers,the pricing strategy of the duopoly e-commerce platform in emerging markets is analyzed. 展开更多
关键词 Deep reinforcement learning e-commerce platform dynamic evaluation game model pricing strategy
下载PDF
Improved PSO for integrating dynamic cell formation and layout problems
4
作者 Zhou Binghai Lu Yubin 《Journal of Southeast University(English Edition)》 EI CAS 2017年第4期409-415,共7页
To decrease the impact of shorter product life cycles,dynamic cell formation problems(CFPs)and cell layout problems(CLPs)were simultaneously optimized.First,CFPs and CLPs were formally described.Due to the changes of ... To decrease the impact of shorter product life cycles,dynamic cell formation problems(CFPs)and cell layout problems(CLPs)were simultaneously optimized.First,CFPs and CLPs were formally described.Due to the changes of product demands and the lim it of machine capacity,the existing layout needed to be rearranged to a high degree.Secondly,a mathematical model was established for the objective function of minimizing the total costs.Thirdly,a novel dynamic multi-swarm particle swarm optimization(DMS-PSO)algorithm based on the communication learning strategy(CLS)was developed.Toavoid falling into local optimum and slow convergence,each swarm shared their optimal locations before regrouping.Finally,simulation experiments were conducted under different conditions.Numerical results indicate that the proposed algorithm has better stability and it converges faster than other existing algorithms. 展开更多
关键词 dynamic cellular manufacturing system cell formation and layout communication learning strategy dynamic multi-swam particle swam optimization algorithm
下载PDF
Teaching French Through Dynamic Assessment:The Case of The First Year Undergraduate Students FLE
5
作者 Sahraoui Lafrid 《Psychology Research》 2020年第11期438-452,共15页
It is well established that at the university,one forms the critical spirit,the spirit of analysis and the spirit of synthesis.What we advocate is a spirit of evaluation.The process we followed is part of a problemati... It is well established that at the university,one forms the critical spirit,the spirit of analysis and the spirit of synthesis.What we advocate is a spirit of evaluation.The process we followed is part of a problematic of teaching French and especially in didactics of writing.We have implemented an experimental device in our teaching practice.This is the dynamic evaluation.This evaluation allows the measurement of the initial level of achievement of a written production.And also the introduction of elements likely to help the subject to modify his usual strategies involved in the realization of a failed written production.But above all the appreciation of the way new strategies are involved.It is a four-phase experience that lasted a whole year.We first put our sample audience to a pre-test;with them,we determined the teaching objectives;then we set up the training workshops for the dynamic assessment,and finally we closed the process with a final test of measurement and evaluation.Two questionnaires were used and an observation grid. 展开更多
关键词 dynamic assessment learning potential SKILLS transferable macrocompetence strategies MEDIATION
下载PDF
A Dynamic Resource Allocation Strategy with Reinforcement Learning for Multimodal Multi-objective Optimization 被引量:3
6
作者 Qian-Long Dang Wei Xu Yang-Fei Yuan 《Machine Intelligence Research》 EI CSCD 2022年第2期138-152,共15页
Many isolation approaches, such as zoning search, have been proposed to preserve the diversity in the decision space of multimodal multi-objective optimization(MMO). However, these approaches allocate the same computi... Many isolation approaches, such as zoning search, have been proposed to preserve the diversity in the decision space of multimodal multi-objective optimization(MMO). However, these approaches allocate the same computing resources for subspaces with different difficulties and evolution states. In order to solve this issue, this paper proposes a dynamic resource allocation strategy(DRAS)with reinforcement learning for multimodal multi-objective optimization problems(MMOPs). In DRAS, relative contribution and improvement are utilized to define the aptitude of subspaces, which can capture the potentials of subspaces accurately. Moreover, the reinforcement learning method is used to dynamically allocate computing resources for each subspace. In addition, the proposed DRAS is applied to zoning searches. Experimental results demonstrate that DRAS can effectively assist zoning search in finding more and better distributed equivalent Pareto optimal solutions in the decision space. 展开更多
关键词 Multimodal multi-objective optimization(MMO) dynamic resource allocating strategy(DRAS) reinforcement learning(RL) decision space partition zoning search
原文传递
Multi-Strategy Boosted Spider Monkey Optimization Algorithm for Feature Selection
7
作者 Jianguo Zheng Shuilin Chen 《Computer Systems Science & Engineering》 SCIE EI 2023年第9期3619-3635,共17页
To solve the problem of slow convergence and easy to get into the local optimum of the spider monkey optimization algorithm,this paper presents a new algorithm based on multi-strategy(ISMO).First,the initial populatio... To solve the problem of slow convergence and easy to get into the local optimum of the spider monkey optimization algorithm,this paper presents a new algorithm based on multi-strategy(ISMO).First,the initial population is generated by a refracted opposition-based learning strategy to enhance diversity and ergodicity.Second,this paper introduces a non-linear adaptive dynamic weight factor to improve convergence efficiency.Then,using the crisscross strategy,using the horizontal crossover to enhance the global search and vertical crossover to keep the diversity of the population to avoid being trapped in the local optimum.At last,we adopt a Gauss-Cauchy mutation strategy to improve the stability of the algorithm by mutation of the optimal individuals.Therefore,the application of ISMO is validated by ten benchmark functions and feature selection.It is proved that the proposed method can resolve the problem of feature selection. 展开更多
关键词 Spider monkey optimization refracted opposition-based learning crisscross strategy Gauss-Cauchy mutation strategy feature selection
下载PDF
Thinking Metacognitively about Metacognition in Second and Foreign Language Learning,Teaching,and Research:Toward a Dynamic Metacognitive Systems Perspective 被引量:5
8
作者 LAWRENCE JUN ZHANG DONGLAN ZHANG 《当代外语研究》 2013年第12期111-121,共11页
Against a background where language learning/learner strategy(LLS)research was criticized,we would like to bring to the fore a key concept,metacognition,which has not been fully understood in the way that criticisms w... Against a background where language learning/learner strategy(LLS)research was criticized,we would like to bring to the fore a key concept,metacognition,which has not been fully understood in the way that criticisms were levelled against LLS research.We argue that despite the justification for some points,such criticisms are not based on a complete understanding of the theoretical foundations of LLS research,nor on what metacognition entails,especially when these two constructs are related to both the cognitive and sociocultural domains of learning.Exactly because metacognition is undergirded by both cognitive and sociocultural underpinnings,it cannot be treated purely as a cognitive enterprise;instead,it should be conceptualized as a set of complex dynamic systems.We argue that some of the criticisms of LLS research are problematic because of the critics'limited understanding of LLS research.These critics have not pointed out close relationships between LLS research and metacognition.To disperse the confusion caused by such criticisms and to advance the field,we elaborate on a dynamic metacognitive systems perspective on second and foreign language learning,teaching and research.We maintain that thinking metacognitively about metacognition with dual or multiple perspectives is necessary.Doing so will enable us to see the contribution of the dynamic metacognitive systems perspective to enhancing our understanding of second and foreign learning,teaching,and research. 展开更多
关键词 英语学习 学习方法 阅读知识 阅读材料
原文传递
基元库构建思想的机器人动作与策略演示学习方法
9
作者 李铁军 刘家奇 +1 位作者 刘今越 贾晓辉 《计算机工程与应用》 CSCD 北大核心 2024年第8期90-98,共9页
为解决机器人演示学习过程中演示数据优化、动作与任务策略的存储调用问题,提出一种利用基元库思想的演示学习方法。动作学习采用专家拖动机械臂执行动作获取演示数据,利用高斯混合模型与高斯混合回归提升数据质量,由动态运动基元算法... 为解决机器人演示学习过程中演示数据优化、动作与任务策略的存储调用问题,提出一种利用基元库思想的演示学习方法。动作学习采用专家拖动机械臂执行动作获取演示数据,利用高斯混合模型与高斯混合回归提升数据质量,由动态运动基元算法转换为基函数的权重值。策略学习将任务步骤创建为动作基元,向基元内添加得到的权重值并构建包含任务执行策略的基元名片,由基元组成基元库完成存储。执行任务时从基元库中有序调用基元,利用YOLOv5目标检测网络和AlexNet图像分类网络检测目标信息,匹配动作并泛化出具有原动作特征的新动作。该方法实现了从演示中学习动作与策略存储,根据实际目标组合合适动作完成任务。钢筋绑扎实验创建5个动作基元,通过专家演示学习10个动作,机器人利用动作基元库成功完成水平面与竖直面钢筋交叉点绑扎任务说明其有效性。 展开更多
关键词 演示学习 轨迹模仿学习 任务策略学习 动态运动基元 运动基元库
下载PDF
基于新型细菌觅食优化算法的飞机动态泊位问题
10
作者 牛奔 张楚容 +1 位作者 余俊 周天薇 《系统工程学报》 CSCD 北大核心 2024年第3期413-427,共15页
随着航空运输业的发展,传统手动设计泊位方案已难以满足日益增长的外包维修需求.在外包模式下,如何快速给出高效的动态泊位方案关系到维修任务订单的准点交付,是飞机维修服务公司亟待解决的重要问题.针对飞机泊位进出顺序及碰撞检测特点... 随着航空运输业的发展,传统手动设计泊位方案已难以满足日益增长的外包维修需求.在外包模式下,如何快速给出高效的动态泊位方案关系到维修任务订单的准点交付,是飞机维修服务公司亟待解决的重要问题.针对飞机泊位进出顺序及碰撞检测特点,构建带时间窗的飞机维修泊位模型.设计自适应趋化学习及交叉协作策略,提出新型细菌觅食优化算法,并设计一系列约束处理机制.研究结果表明,提出的基于矩形碰撞检测方法可有效预防并判断飞机间碰撞阻塞情况.新型细菌觅食优化算法在解决飞机动态泊位问题上展现出搜索精度高、稳定性强等特点.所得高效智能化泊位调度方案有助于在保证维修安全的情况下提升飞机维修服务提供商的维修服务效率,改进维修资源利用率与维修系统的柔性,为企业实现高质量发展打下良好基础. 展开更多
关键词 飞机动态泊位 维修时间窗 细菌觅食优化算法 自适应趋化学习策略 交叉协作策略
下载PDF
基于博弈论与强化学习的多智能体路径规划算法 被引量:1
11
作者 熊文博 郭磊 焦彤宇 《深圳大学学报(理工版)》 CAS CSCD 北大核心 2024年第3期274-282,共9页
针对平面上多个智能体构成的路径规划求解算法普遍存在的速度慢效率低等问题进行研究,将多智能体路径规划问题归结为非零和随机博弈,使用多智能体强化学习算法赢或快速学习-策略爬山(win or learn fast-policy hill-climbing,WoLF-PHC)... 针对平面上多个智能体构成的路径规划求解算法普遍存在的速度慢效率低等问题进行研究,将多智能体路径规划问题归结为非零和随机博弈,使用多智能体强化学习算法赢或快速学习-策略爬山(win or learn fast-policy hill-climbing,WoLF-PHC)得到纳什均衡策略,为各智能体做出无冲突的最优路径决策,提出能够快速自适应的WoLF-PHC(fast adaptive WoLF-PHC,FA-WoLF-PHC)算法,通过构建目标函数,使用梯度下降对学习率进行自适应更新.在猜硬币和自定义收益矩阵2个博弈场景中使用FA-WoLF-PHC,并与策略爬山(policy hill-climbing,PHC)算法和Wolf-PHC算法进行比较.结果表明,FA-WoLF-PHC算法的学习速度较WoLF-PHC算法有所提升,并有效减小了WoLF-PHC算法和PHC算法在学习过程中出现的振荡现象.在多智能体路径规划问题中,FA-WoLF-PHC算法的学习速度比WoLF-PHC算法提高了16.01%.将路径规划问题的环境栅格地图扩大为6×6,智能体数量增加为3个时,FA-WoLF-PHC、WoLF-PSP和多头绒泡菌-人工势场Sarsa(physarum polycephalum-artificial potential state-action-reward-state-action,PP-AP Sarsa)算法在10次实验中学习到最终策略需要的平均时间分别为16.30、20.59和17.72 s.在多智能体路径规划问题中,FA-WoLF-PHC算法能够得到各智能体的纳什均衡策略,学习速度较WoLF-PSP和PP-AP Sarsa算法有显著提高.FA-WoLF-PHC算法在常见的博弈场景中能够快速获得纳什策略,在多智能体路径规划问题中可为多个智能体生成无冲突的最优路径,并且在学习速度等方面较其他算法有显著提高. 展开更多
关键词 人工智能 博弈论 动态规划 纳什均衡策略 强化学习 多智能体路径规划
下载PDF
基于动态学习策略的船舶装配零部件检测
12
作者 高硕 朱仕涛 +3 位作者 杨春涛 金轩铖 夏唐斌 奚立峰 《船舶工程》 CSCD 北大核心 2024年第S01期421-426,共6页
为了在装配前对船舶零部件不规则形状表面缺陷进行高精度识别和实时定位。设计一种基于动态结构重参数化策略的轻量级深度神经检测网络,用于多尺度表面缺陷的高效检测。该动态学习策略通过在训练过程中扩展具有高重要性的骨干网结构提... 为了在装配前对船舶零部件不规则形状表面缺陷进行高精度识别和实时定位。设计一种基于动态结构重参数化策略的轻量级深度神经检测网络,用于多尺度表面缺陷的高效检测。该动态学习策略通过在训练过程中扩展具有高重要性的骨干网结构提取更多信息。同时在边缘设备上进行检测时,可利用结构重参数化将模型无损压缩为轻量级模型实现高效推理,最大化利用物联网场景中边云不同的计算性能。通过实验验证本文所提出方法相比传统方法具有更好的优越性,为船舶装配零部件自动化高效检测提供有效支撑。 展开更多
关键词 缺陷检测 装配零部件 动态学习策略
下载PDF
基于贝叶斯网络强化学习的复杂装备维修排故策略生成
13
作者 刘宝鼎 于劲松 +2 位作者 韩丹阳 唐荻音 李鑫 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第4期1354-1364,共11页
为解决传统启发式维修排故决策方法决策时间长、生成策略总成本高的问题,提出一种基于贝叶斯网络(BN)结合强化学习(RL)进行复杂装备维修排故策略生成方法。为更好地利用复杂装备模型知识,使用BN进行维修排故知识表述,并且为更加贴近复... 为解决传统启发式维修排故决策方法决策时间长、生成策略总成本高的问题,提出一种基于贝叶斯网络(BN)结合强化学习(RL)进行复杂装备维修排故策略生成方法。为更好地利用复杂装备模型知识,使用BN进行维修排故知识表述,并且为更加贴近复杂装备实际情况,依据故障模式、影响和危害性分析(FMECA)的故障概率,经合理转化后作为BN的先验概率;为使用RL的决策过程生成维修排故策略,提出一种维修排故决策问题转化为RL问题的方法;为更好地求解转化得到的强化学习问题,引入观测-修复动作对(O-A)以减小问题规模,并设置动作掩码处理动态动作空间。仿真结果表明:在统一的性能指标下,所提BN-RL方法较传统方法获得更高的指标值,证明该方法的有效性和优越性。 展开更多
关键词 强化学习 贝叶斯网络 维修排故策略生成 复杂装备 动态动作空间
下载PDF
基于平行全维动态注意力机制的视觉地点识别方法
14
作者 刘沛津 刘淑婕 +2 位作者 何林 彭莉峻 付雪峰 《液晶与显示》 CAS CSCD 北大核心 2024年第9期1233-1242,共10页
针对天气、季节、光线等环境变化导致的视觉地点识别鲁棒性低的问题,提出了一种提升视觉地点识别特征描述子环境稳健性的多维度注意力机制——平行全维动态注意力机制(POD-Attention)。为实现卷积核在全维度上的动态精细探索,增强特征... 针对天气、季节、光线等环境变化导致的视觉地点识别鲁棒性低的问题,提出了一种提升视觉地点识别特征描述子环境稳健性的多维度注意力机制——平行全维动态注意力机制(POD-Attention)。为实现卷积核在全维度上的动态精细探索,增强特征提取网络对建筑物等不变性特征的提取与学习能力,采用全维动态卷积块在卷积核全维度(输入输出通道、卷积空间和卷积核数量)上添加互补性注意力。将1×1卷积、Skip Squeeze-and-Excitation(SSE)模块与全维动态卷积块平行融合,不仅有效提高了特征提取速率,还扩大了视觉地点识别网络的感受野,进一步提升了视觉地点的识别准确率。在公开数据集上进行的实验表明,基于VGG16及Patch-NetVLAD特征聚合的视觉地点识别方法经POD注意力机制改进后,在Nordland与Mapillary Street-Level Sequences数据集上的Recall@1指标提升了9.7%与1.8%,充分证明了本文POD注意力机制对于网络性能的提升效果,也证明了基于本文POD注意力机制的视觉地点识别方法的有效性。 展开更多
关键词 视觉地点识别 环境鲁棒性 深度学习 平行全维动态注意力机制 平行策略
下载PDF
基于改进灰狼优化算法的机器人全局路径规划
15
作者 孙波 周健康 +3 位作者 赵玉清 张悦 彭浩 赵伟 《科学技术与工程》 北大核心 2024年第33期14287-14297,共11页
随着智能机器人导航技术的发展,路径规划的研究也得到了越来越多的关注和重视。提出了一种改进的灰狼优化算法,用于解决路径规划中机器人容易陷入局部最优以及收敛速度慢的问题。首先,创建了一个二维空间模型,模仿机器人的路径规划过程... 随着智能机器人导航技术的发展,路径规划的研究也得到了越来越多的关注和重视。提出了一种改进的灰狼优化算法,用于解决路径规划中机器人容易陷入局部最优以及收敛速度慢的问题。首先,创建了一个二维空间模型,模仿机器人的路径规划过程。为了加强算法的全局搜索性能,在全局搜索阶段的位置更新公式中引入了动态扰动系数,并将位置更新公式中的控制参数由线性递减改进为非线性递减。其次,在局部搜索阶段引入了反向学习选择策略,以平衡灰狼种群的多样性和算法的局部挖掘能力,提高了算法的收敛精度。选择8种常见测试函数进行检验,数据结果表明了改进算法的有效性。最后将改进后的灰狼优化算法与原始灰狼优化算法、粒子群算法进行了对比实验,数据显示在简单、一般、复杂环境下,改进后的平均路径距离较改进前分别缩短了11.99%、7.79%、5.78%,平均迭代次数分别降低了75.63%、59.78%、43.67%,表明改进后的算法在最优距离和避障效果等方面都明显优于其他对比算法。 展开更多
关键词 灰狼优化算法 路径规划 动态扰动系数 非线性控制参数 反向学习策略
下载PDF
个性化动态集成的阿尔茨海默症辅助诊断模型
16
作者 梁浩霖 潘丹 +2 位作者 曾安 杨宝瑶 Xiaowei Song 《计算机工程与应用》 CSCD 北大核心 2024年第5期139-145,共7页
针对阿尔茨海默症(AD)分类模型大多没有针对输入样本制定特定的策略,导致容易忽略样本间的个性化差异信息的问题,提出个性化动态集成AD分类模型。该模型考虑到输入样本间脑区退化程度的差异性,利用注意力机制评估特定于输入样本的各脑... 针对阿尔茨海默症(AD)分类模型大多没有针对输入样本制定特定的策略,导致容易忽略样本间的个性化差异信息的问题,提出个性化动态集成AD分类模型。该模型考虑到输入样本间脑区退化程度的差异性,利用注意力机制评估特定于输入样本的各脑区退化程度,并根据脑区退化程度对脑区特征进行挑选和融合;同时通过重新设计损失函数,解决未被选中脑区无法获得优化梯度的问题,从而提高AD分类性能。实验结果表明,该模型在AD vs.HC(正常组)、MCIc(会向AD转化的轻度认知障碍)vs.HC以及MCIc vs.MCInc(不会向AD转化的轻度认知障碍)中的分类准确率表现分别提升4%、11%以及8%。同时,模型定位到的退化脑区功能与AD临床表现具有高度一致性。 展开更多
关键词 阿尔茨海默症(AD) 动态集成策略 集成学习 卷积神经网络
下载PDF
混合动力汽车深度强化学习分层能量管理策略
17
作者 戴科峰 胡明辉 《重庆大学学报》 CAS CSCD 北大核心 2024年第1期41-51,共11页
为了提高混合动力汽车的燃油经济性和控制策略的稳定性,以第三代普锐斯混联式混合动力汽车作为研究对象,提出了一种等效燃油消耗最小策略(equivalent fuel consumption minimization strategy,ECMS)与深度强化学习方法(deep feinforceme... 为了提高混合动力汽车的燃油经济性和控制策略的稳定性,以第三代普锐斯混联式混合动力汽车作为研究对象,提出了一种等效燃油消耗最小策略(equivalent fuel consumption minimization strategy,ECMS)与深度强化学习方法(deep feinforcement learning,DRL)结合的分层能量管理策略。仿真结果证明,该分层控制策略不仅可以让强化学习中的智能体在无模型的情况下实现自适应节能控制,而且能保证混合动力汽车在所有工况下的SOC都满足约束限制。与基于规则的能量管理策略相比,此分层控制策略可以将燃油经济性提高20.83%~32.66%;增加智能体对车速的预测信息,可进一步降低5.12%的燃油消耗;与没有分层的深度强化学习策略相比,此策略可将燃油经济性提高8.04%;与使用SOC偏移惩罚的自适应等效燃油消耗最小策略(A-ECMS)相比,此策略下的燃油经济性将提高5.81%~16.18%。 展开更多
关键词 混合动力汽车 动态规划 强化学习 深度神经网络 等效燃油消耗
下载PDF
An Industrial Intrusion Detection Method Based on Hybrid Convolutional Neural Networks with Improved TCN
18
作者 Zhihua Liu Shengquan Liu Jian Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第1期411-433,共23页
Network intrusion detection systems(NIDS)based on deep learning have continued to make significant advances.However,the following challenges remain:on the one hand,simply applying only Temporal Convolutional Networks(... Network intrusion detection systems(NIDS)based on deep learning have continued to make significant advances.However,the following challenges remain:on the one hand,simply applying only Temporal Convolutional Networks(TCNs)can lead to models that ignore the impact of network traffic features at different scales on the detection performance.On the other hand,some intrusion detection methods considermulti-scale information of traffic data,but considering only forward network traffic information can lead to deficiencies in capturing multi-scale temporal features.To address both of these issues,we propose a hybrid Convolutional Neural Network that supports a multi-output strategy(BONUS)for industrial internet intrusion detection.First,we create a multiscale Temporal Convolutional Network by stacking TCN of different scales to capture the multiscale information of network traffic.Meanwhile,we propose a bi-directional structure and dynamically set the weights to fuse the forward and backward contextual information of network traffic at each scale to enhance the model’s performance in capturing the multi-scale temporal features of network traffic.In addition,we introduce a gated network for each of the two branches in the proposed method to assist the model in learning the feature representation of each branch.Extensive experiments reveal the effectiveness of the proposed approach on two publicly available traffic intrusion detection datasets named UNSW-NB15 and NSL-KDD with F1 score of 85.03% and 99.31%,respectively,which also validates the effectiveness of enhancing the model’s ability to capture multi-scale temporal features of traffic data on detection performance. 展开更多
关键词 Intrusion detection industrial internet channel spatial attention multiscale features dynamic fusion multi-output learning strategy
下载PDF
融合学习差异与Lévy飞行的动态平衡正余弦算法
19
作者 李聪 刘昊 赵雨微 《辽宁科技大学学报》 CAS 2024年第3期233-240,共8页
为了提升正余弦算法的收敛性能,本文提出一种融合学习差异与Lévy飞行的动态平衡正余弦改进算法,定义为SCALLD算法。通过引入学习差异策略,减少搜索个体对其位置信息的依赖,增强全局探索能力;加入Lévy飞行机制,丰富种群多样性... 为了提升正余弦算法的收敛性能,本文提出一种融合学习差异与Lévy飞行的动态平衡正余弦改进算法,定义为SCALLD算法。通过引入学习差异策略,减少搜索个体对其位置信息的依赖,增强全局探索能力;加入Lévy飞行机制,丰富种群多样性,提升探索能力;采用动态平衡策略,平衡探索与开发能力,提高收敛速度和稳定性。在CEC2022基准测试函数上的实验表明,与六种算法相比,SCALLD展现出更优的收敛性能和稳定性,Wilcoxon秩和检验进一步证明了SCALLD的竞争优势,为解决复杂优化问题提供参考。 展开更多
关键词 正余弦算法 智能优化算法 学习差异策略 Lévy飞行 动态平衡
下载PDF
膝-踝-趾动力型假肢解耦控制研究
20
作者 耿艳利 王希瑞 +2 位作者 武正恩 郭欣 王倩 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2024年第2期324-331,共8页
针对膝-踝-趾动力型假肢系统的强耦合性,导致系统控制效果不理想等问题,本文设计控制法则分解法解耦器对系统进行解耦,降低耦合度,提高控制效果。利用拉格朗日方程建立了膝-踝-趾动力型假肢系统支撑末期的动力学模型,此模型的耦合度为1.... 针对膝-踝-趾动力型假肢系统的强耦合性,导致系统控制效果不理想等问题,本文设计控制法则分解法解耦器对系统进行解耦,降低耦合度,提高控制效果。利用拉格朗日方程建立了膝-踝-趾动力型假肢系统支撑末期的动力学模型,此模型的耦合度为1.22,耦合性较强,需要进行解耦;基于控制法则分解法设计模型解耦器,以此简化假肢系统,将耦合度强的系统简化为膝、踝、趾独立控制的模型;基于自适应迭代学习设计控制器,对解耦前后三自由度假肢系统的各关节进行控制。结果表明:此解耦器可以将假肢模型简化为3个单输入、单输出的系统,同时降低关节间的耦合度,加快系统的收敛速度,与解耦前的控制效果相比,解耦后系统收敛误差明显减小。本文为多关节假肢系统提供了模型简化方法,为实物样机控制提供理论验证。 展开更多
关键词 膝-踝-趾动力型假肢 动力学模型 控制法则分解法解耦器 自适应迭代学习 解耦控制策略 被动型假肢 拉格朗日方程 轨迹跟踪
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部