Various nodes,logistics,capital flows,and information flows are required to make systematic decisions concerning the operation of an integrated coal supply system. We describe a quantitative analysis of such a system....Various nodes,logistics,capital flows,and information flows are required to make systematic decisions concerning the operation of an integrated coal supply system. We describe a quantitative analysis of such a system. A dynamic optimization model of the supply chain is developed. It has achieved optimal system profit under conditions guaranteeing a certain level of customer satisfaction. Applying this model to coal production of the Xuzhou coal mines allows recommendations for a more systematic use of washing and processing,transportation and sale resources for commercial coal production to be made. The results show that this model,which is scientific and effective,has an important value for making reasonable decisions related to complex coal enterprises.展开更多
Associated dynamic performance of the clamping force control valve used in continuously variable transmission (CVT) is optimized. Firstly, the structure and working principle of the valve are analyzed, and then a dy...Associated dynamic performance of the clamping force control valve used in continuously variable transmission (CVT) is optimized. Firstly, the structure and working principle of the valve are analyzed, and then a dynamic model is set up by means of mechanism analysis. For the purpose of checking the validity of the modeling method, a prototype workpiece of the valve is manufactured for comparison test, and its simulation result follows the experimental result quite well. An associated performance index is founded considering the response time, overshoot and saving energy, and five structural parameters are selected to adjust for deriving the optimal associated performance index. The optimization problem is solved by the genetic algorithm (GA) with necessary constraints. Finally, the properties of the optimized valve are compared with those of the prototype workpiece, and the results prove that the dynamic performance indexes of the optimized valve are much better than those of the prototype workpiece.展开更多
Hybrid modeling approaches have recently been investigated as an attractive alternative to model fermentation processes. Normally, these approaches require estimation data to train the empirical model part of a hybrid...Hybrid modeling approaches have recently been investigated as an attractive alternative to model fermentation processes. Normally, these approaches require estimation data to train the empirical model part of a hybrid model. This may result in decreasing the generalization ability of the derived hybrid model. Therefore, a simultaneous hybrid modeling approach is presented in this paper. It transforms the training of the empirical model part into a dynamic system parameter identification problem, and thus allows training the empirical model part with only measured data. An adaptive escaping particle swarm optimization(AEPSO) algorithm with escaping and adaptive inertia weight adjustment strategies is constructed to solve the resulting parameter identification problem, and thereby accomplish the training of the empirical model part. The uniform design method is used to determine the empirical model structure. The proposed simultaneous hybrid modeling approach has been used in a lab-scale nosiheptide batch fermentation process. The results show that it is effective and leads to a more consistent model with better generalization ability when compared to existing ones. The performance of AEPSO is also demonstrated.展开更多
Taking the rubber torsion bushing of a certain type of all-terrain tracked vehicle as the research object,a theoretical model of torsional stiffness was proposed according to the non-linear characteristics of rubber c...Taking the rubber torsion bushing of a certain type of all-terrain tracked vehicle as the research object,a theoretical model of torsional stiffness was proposed according to the non-linear characteristics of rubber components and structural feature of the suspension. Simulations were carried out under different working conditions to obtain root mean square of vertical weighted acceleration as the evaluation index for ride performance of the all-terrain tracked vehicle,with a dynamics model of the whole vehicle based on the theoretical model of the torsional stiffness and standard road roughness as excitation input. Response surface method was used to establish the parametric optimization model of the torsional stiffness. The evaluation index showed that ride performance of the vehicle with optimized torsional stiffness model of suspension was improved compared with previous model fromexperiment. The torsional stiffness model of rubber bushing provided a theoretical basis for the design of the rubber torsion bushing in light tracked vehicles.展开更多
Decarbonization of the electricity sector is crucial to mitigate the impacts of climate change and global warming over the coming decades.The key challenges for achieving this goal are carbon emission trading and elec...Decarbonization of the electricity sector is crucial to mitigate the impacts of climate change and global warming over the coming decades.The key challenges for achieving this goal are carbon emission trading and electricity sector regulation,which are also the major components of the carbon and electricity markets,respectively.In this paper,a joint electricity and carbon market model is proposed to investigate the relationships between electricity price,carbon price,and electricity generation capacity,thereby identifying pathways toward a renewable energy transition under the transactional energy interconnection framework.The proposed model is a dynamically iterative optimization model consisting of upper-level and lower-level models.The upper-level model optimizes power generation and obtains the electricity price,which drives the lower-level model to update the carbon price and electricity generation capacity.The proposed model is verified using the Northeast Asia power grid.The results show that increasing carbon price will result in increased electricity price,along with further increases in renewable energy generation capacity in the following period.This increase in renewable energy generation will reduce reliance on carbon-emitting energy sources,and hence the carbon price will decline.Moreover,the interconnection among zones in the Northeast Asia power grid will enable reasonable allocation of zonal power generation.Carbon capture and storage (CCS) will be an effective technology to reduce the carbon emissions and further realize the emission reduction targets in 2030-2050.It eases the stress of realizing the energy transition because of the less urgency to install additional renewable energy capacity.展开更多
Background modeling and subtraction is a fundamental problem in video analysis. Many algorithms have been developed to date, but there are still some challenges in complex environments, especially dynamic scenes in wh...Background modeling and subtraction is a fundamental problem in video analysis. Many algorithms have been developed to date, but there are still some challenges in complex environments, especially dynamic scenes in which backgrounds are themselves moving, such as rippling water and swaying trees. In this paper, a novel background modeling method is proposed for dynamic scenes by combining both tensor representation and swarm intelligence. We maintain several video patches, which are naturally represented as higher order tensors,to represent the patterns of background, and utilize tensor low-rank approximation to capture the dynamic nature. Furthermore, we introduce an ant colony algorithm to improve the performance. Experimental results show that the proposed method is robust and adaptive in dynamic environments, and moving objects can be perfectly separated from the complex dynamic background.展开更多
文摘Various nodes,logistics,capital flows,and information flows are required to make systematic decisions concerning the operation of an integrated coal supply system. We describe a quantitative analysis of such a system. A dynamic optimization model of the supply chain is developed. It has achieved optimal system profit under conditions guaranteeing a certain level of customer satisfaction. Applying this model to coal production of the Xuzhou coal mines allows recommendations for a more systematic use of washing and processing,transportation and sale resources for commercial coal production to be made. The results show that this model,which is scientific and effective,has an important value for making reasonable decisions related to complex coal enterprises.
基金Key Science-Technology Foundation of Hunan Province, China (No. 05GK2007).
文摘Associated dynamic performance of the clamping force control valve used in continuously variable transmission (CVT) is optimized. Firstly, the structure and working principle of the valve are analyzed, and then a dynamic model is set up by means of mechanism analysis. For the purpose of checking the validity of the modeling method, a prototype workpiece of the valve is manufactured for comparison test, and its simulation result follows the experimental result quite well. An associated performance index is founded considering the response time, overshoot and saving energy, and five structural parameters are selected to adjust for deriving the optimal associated performance index. The optimization problem is solved by the genetic algorithm (GA) with necessary constraints. Finally, the properties of the optimized valve are compared with those of the prototype workpiece, and the results prove that the dynamic performance indexes of the optimized valve are much better than those of the prototype workpiece.
基金Supported by the Specialized Research Fund for the Doctoral Program of Higher Education(No.20120042120014)
文摘Hybrid modeling approaches have recently been investigated as an attractive alternative to model fermentation processes. Normally, these approaches require estimation data to train the empirical model part of a hybrid model. This may result in decreasing the generalization ability of the derived hybrid model. Therefore, a simultaneous hybrid modeling approach is presented in this paper. It transforms the training of the empirical model part into a dynamic system parameter identification problem, and thus allows training the empirical model part with only measured data. An adaptive escaping particle swarm optimization(AEPSO) algorithm with escaping and adaptive inertia weight adjustment strategies is constructed to solve the resulting parameter identification problem, and thereby accomplish the training of the empirical model part. The uniform design method is used to determine the empirical model structure. The proposed simultaneous hybrid modeling approach has been used in a lab-scale nosiheptide batch fermentation process. The results show that it is effective and leads to a more consistent model with better generalization ability when compared to existing ones. The performance of AEPSO is also demonstrated.
文摘Taking the rubber torsion bushing of a certain type of all-terrain tracked vehicle as the research object,a theoretical model of torsional stiffness was proposed according to the non-linear characteristics of rubber components and structural feature of the suspension. Simulations were carried out under different working conditions to obtain root mean square of vertical weighted acceleration as the evaluation index for ride performance of the all-terrain tracked vehicle,with a dynamics model of the whole vehicle based on the theoretical model of the torsional stiffness and standard road roughness as excitation input. Response surface method was used to establish the parametric optimization model of the torsional stiffness. The evaluation index showed that ride performance of the vehicle with optimized torsional stiffness model of suspension was improved compared with previous model fromexperiment. The torsional stiffness model of rubber bushing provided a theoretical basis for the design of the rubber torsion bushing in light tracked vehicles.
基金supported in part by National Key Research and Development Program of China(2016YFB0901900)the Science and Technology Foundation of GEIDCO(SGGEIG00JYJS1900016)
文摘Decarbonization of the electricity sector is crucial to mitigate the impacts of climate change and global warming over the coming decades.The key challenges for achieving this goal are carbon emission trading and electricity sector regulation,which are also the major components of the carbon and electricity markets,respectively.In this paper,a joint electricity and carbon market model is proposed to investigate the relationships between electricity price,carbon price,and electricity generation capacity,thereby identifying pathways toward a renewable energy transition under the transactional energy interconnection framework.The proposed model is a dynamically iterative optimization model consisting of upper-level and lower-level models.The upper-level model optimizes power generation and obtains the electricity price,which drives the lower-level model to update the carbon price and electricity generation capacity.The proposed model is verified using the Northeast Asia power grid.The results show that increasing carbon price will result in increased electricity price,along with further increases in renewable energy generation capacity in the following period.This increase in renewable energy generation will reduce reliance on carbon-emitting energy sources,and hence the carbon price will decline.Moreover,the interconnection among zones in the Northeast Asia power grid will enable reasonable allocation of zonal power generation.Carbon capture and storage (CCS) will be an effective technology to reduce the carbon emissions and further realize the emission reduction targets in 2030-2050.It eases the stress of realizing the energy transition because of the less urgency to install additional renewable energy capacity.
基金supported by National Natural Science Foundation of China (Grant Nos. 11301137 and 11371036)the National Science Foundation of Hebei Province of China (Grant No. A2014205100
文摘Background modeling and subtraction is a fundamental problem in video analysis. Many algorithms have been developed to date, but there are still some challenges in complex environments, especially dynamic scenes in which backgrounds are themselves moving, such as rippling water and swaying trees. In this paper, a novel background modeling method is proposed for dynamic scenes by combining both tensor representation and swarm intelligence. We maintain several video patches, which are naturally represented as higher order tensors,to represent the patterns of background, and utilize tensor low-rank approximation to capture the dynamic nature. Furthermore, we introduce an ant colony algorithm to improve the performance. Experimental results show that the proposed method is robust and adaptive in dynamic environments, and moving objects can be perfectly separated from the complex dynamic background.