期刊文献+
共找到1,316篇文章
< 1 2 66 >
每页显示 20 50 100
Fixed-Time Sliding Mode Control With Varying Exponent Coefficient for Modular Reconfigurable Flight Arrays
1
作者 Jianquan Yang Chunxi Yang +1 位作者 Xiufeng Zhang Jing Na 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第2期514-528,共15页
The modular system can change its physical structure by self-assembly and self-disassembly between modules to dynamically adapt to task and environmental requirements. Recognizing the adaptive capability of modular sy... The modular system can change its physical structure by self-assembly and self-disassembly between modules to dynamically adapt to task and environmental requirements. Recognizing the adaptive capability of modular systems, we introduce a modular reconfigurable flight array(MRFA) to pursue a multifunction aircraft fitting for diverse tasks and requirements,and investigate the attitude control and the control allocation problem by using the modular reconfigurable flight array as a platform. First, considering the variable and irregular topological configuration of the modular array, a center-of-mass-independent flight array dynamics model is proposed to allow control allocation under over-actuated situations. Secondly, in order to meet the stable, fast and accurate attitude tracking performance of the MRFA, a fixed-time convergent sliding mode controller with state-dependent variable exponent coefficients is proposed to ensure fast convergence rate both away from and near the system equilibrium point without encountering the singularity. It is shown that the controller also has fixed-time convergent characteristics even in the presence of external disturbances. Finally,simulation results are provided to demonstrate the effectiveness of the proposed modeling and control strategies. 展开更多
关键词 Control allocation dynamic model fixed-time stabilization modular reconfigurable flight array(MRFA) sliding mode
下载PDF
Dynamic flight stability of a hovering model insect:lateral motion 被引量:17
2
作者 Yanlai Zhang Mao Sun 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2010年第2期175-190,共16页
The lateral dynamic flight stability of a hovering model insect (dronefly) was studied using the method of computational fluid dynamics to compute the stability derivatives and the techniques of eigenvalue and eigen... The lateral dynamic flight stability of a hovering model insect (dronefly) was studied using the method of computational fluid dynamics to compute the stability derivatives and the techniques of eigenvalue and eigenvector analysis for solving the equations of motion. The main results are as following. (i) Three natural modes of motion were identified: one unstable slow divergence mode (mode 1), one stable slow oscillatory mode (mode 2), and one stable fast subsidence mode (mode 3). Modes 1 and 2 mainly consist of a rotation about the horizontal longitudinal axis (x-axis) and a side translation; mode 3 mainly consists of a rotation about the x-axis and a rotation about the vertical axis. (ii) Approximate analytical expressions of the eigenvalues are derived, which give physical insight into the genesis of the natural modes of motion. (iii) For the unstable divergence mode, td, the time for initial disturbances to double, is about 9 times the wingbeat period (the longitudinal motion of the model insect was shown to be also unstable and td of the longitudinal unstable mode is about 14 times the wingbeat period). Thus, although the flight is not dynamically stable, the instability does not grow very fast and the insect has enough time to control its wing motion to suppress the disturbances. 展开更多
关键词 INSECT dynamic flight stability Hovering ·Lateral motion Natural modes of motion
下载PDF
Dynamic flight stability of hovering model insects:theory versus simulation using equations of motion coupled with Navier-Stokes equations 被引量:9
3
作者 Yan-Lai Zhang Mao Sun 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2010年第4期509-520,共12页
In the present paper, the longitudinal dynamic flight stability properties of two model insects are predicted by an approximate theory and computed by numerical sim- ulation. The theory is based on the averaged model ... In the present paper, the longitudinal dynamic flight stability properties of two model insects are predicted by an approximate theory and computed by numerical sim- ulation. The theory is based on the averaged model (which assumes that the frequency of wingbeat is sufficiently higher than that of the body motion, so that the flapping wings' degrees of freedom relative to the body can be dropped and the wings can be replaced by wingbeat-cycle-average forces and moments); the simulation solves the complete equations of motion coupled with the Navier-Stokes equations. Comparison between the theory and the simulation provides a test to the validity of the assumptions in the theory. One of the insects is a model dronefly which has relatively high wingbeat frequency (164 Hz) and the other is a model hawkmoth which has relatively low wingbeat frequency (26 Hz). The results show that the averaged model is valid for the hawkmoth as well as for the dronefly. Since the wingbeat frequency of the hawkmoth is relatively low (the characteristic times of the natural modes of motion of the body divided by wingbeat period are relatively large) compared with many other insects, that the theory based on the averaged model is valid for the hawkmoth means that it could be valid for many insects. 展开更多
关键词 Insect Hovering dynamic flight stability Averaged model Equations-of-motion Navier-Stokes simulation
下载PDF
Aerodynamics of flexible wing in bees' hovering flight
4
作者 尹东富 张志胜 《Journal of Southeast University(English Edition)》 EI CAS 2013年第4期419-424,共6页
The aerodynamics of 2-dimensional flexible wings in bees' normal hovering flight is studied. Four insect flapping flight coordinate systems, including a global system, a bodyfixed system, a rigid wing-fixed system an... The aerodynamics of 2-dimensional flexible wings in bees' normal hovering flight is studied. Four insect flapping flight coordinate systems, including a global system, a bodyfixed system, a rigid wing-fixed system and a flexible wingfixed system, are established to represent the insects' position, gesture, wing movement and wing deformation, respectively. Then the transformations among four coordinate systems are studied. It is found that the elliptic coordinate system can improve the computation accuracy and reduce the calculation complexity in a 2-dimensional rigid wing. The computation model of a 2-dimensional flexible wing is established, and the changes of the force, moment, and power are investigated. According to the computation results, the large lift and drag peaks at the beginning and end of the stroke can be explained by the superposition of the rapid translational acceleration, the fast pitching-up rotation and the Magnus effect; and the small force and drag peaks can be explained by the convex flow effect and the concave flow effect. Compared with the pressure force, pressure moment and translational power, the viscous force, viscous moment and rotational power are small and can be ignored. 展开更多
关键词 flapping wing coordinate systems hovering flight computational fluid dynamics aerodynamics force Dower
下载PDF
Unsteady aerodynamics modeling for flight dynamics application 被引量:13
5
作者 Qing Wang Kai-Feng He. +3 位作者 Wei-Qi Qian Tian-Jiao Zhang Yan-Qing Cheng Kai-Yuan Wu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第1期14-23,共10页
In view of engineering application, it is practicable to decompose the aerodynamics into three components: the static aerodynamics, the aerodynamic increment due to steady rotations, and the aerodynamic increment due... In view of engineering application, it is practicable to decompose the aerodynamics into three components: the static aerodynamics, the aerodynamic increment due to steady rotations, and the aerodynamic increment due to unsteady separated and vortical flow. The first and the second components can be presented in conventional forms, while the third is described using a one-order differential equation and a radial-basis-function (RBF) network. For an aircraft configuration, the mathematical models of 6- component aerodynamic coefficients are set up from the wind tunnel test data of pitch, yaw, roll, and coupled yawroll large-amplitude oscillations. The flight dynamics of an aircraft is studied by the bifurcation analysis technique in the case of quasi-steady aerodynamics and unsteady aerodynam- ics, respectively. The results show that: (1) unsteady aerodynamics has no effect upon the existence of trim points, but affects their stability; (2) unsteady aerodynamics has great effects upon the existence, stability, and amplitudes of periodic solutions; and (3) unsteady aerodynamics changes the stable regions of trim points obviously. Furthermore, the dynamic responses of the aircraft to elevator deflections are inspected. It is shown that the unsteady aerodynamics is beneficial to dynamic stability for the present aircraft. Finally, the effects of unsteady aerodynamics on the post-stall maneuverability 展开更多
关键词 Unsteady aerodynamics High angle of attack Mathematical model flight dynamics - Bifurcation analysis Post-stall maneuver
下载PDF
Dynamic flight stability of a bumblebee in forward flight 被引量:8
6
作者 Yan Xiong Mao Sun 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2008年第1期25-36,共12页
The longitudinal dynamic flight stability of a bumblebee in forward flight is studied. The method of computational fluid dynamics is used to compute the aerodynamic derivatives and the techniques of eigenvalue and eig... The longitudinal dynamic flight stability of a bumblebee in forward flight is studied. The method of computational fluid dynamics is used to compute the aerodynamic derivatives and the techniques of eigenvalue and eigenvector analysis are employed for solving the equations of motion. The primary findings are as the following. The forward flight of the bumblebee is not dynamically stable due to the existence of one (or two) unstable or approximately neutrally stable natural modes of motion. At hovering to medium flight speed [flight speed Ue = (0-3.5)m s^-1; advance ratio J = 0-0.44], the flight is weakly unstable or approximately neutrally stable; at high speed (Ue = 4.5 m s^-1; J = 0.57), the flight becomes strongly unstable (initial disturbance double its value in only 3.5 wingbeats). 展开更多
关键词 Bumblebee dynamic stability Forward flight Navier-Stokes simulation Natural modes of motion
下载PDF
Lateral dynamic flight stability of hovering insects: theory vs. numerical simulation 被引量:4
7
作者 Yan-Lai Zhang Jiang-Hao Wu Mao Sun 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第1期221-231,共11页
In the present paper, the lateral dynamic flight stability properties of two hovering model insects are predicted by an approximate theory based on the averaged model, and computed by numerical simulation that solves ... In the present paper, the lateral dynamic flight stability properties of two hovering model insects are predicted by an approximate theory based on the averaged model, and computed by numerical simulation that solves the complete equations of motion coupled with the Naviertokes equations. Comparison between the theoretical and simulational results provides a test to the validity of the assumptions made in the theory. One of the insects is a model dronefly which has relatively high wingbeat frequency (164Hz) and the other is a model hawkmoth which has relatively low wingbeat frequency (26 Hz). The following conclusion has been drawn. The theory based on the averaged model works well for the lateral motion of the dronefly. For the hawkmoth, relatively large quantitative differences exist between theory and simulation. This is because the lateral non-dimensional eigenvalues of the hawkmoth are not very small compared with the non-dimensional flapping frequency (the largest lateral non-dimensional eigenvalue is only about 10% smaller than the non-dimensional flapping frequency). Nevertheless, the theory can still correctly predict variational trends of the dynamic properties of the hawkmoth's lateral motion. 展开更多
关键词 Insect - Hovering Lateral dynamic flight stabil- ity Averaged model Equations-of-motion Navier-Stokes simulation
下载PDF
Iterative Estimation for Flight Dynamic Helicopter Simulator
8
作者 Ivana Yoshie Sumida Haroldo F. de Campos Velho +2 位作者 Eduardo F. P. da Luz Ronaldo V. Cruz Luiz CarlosS. Goes 《Journal of Mathematics and System Science》 2015年第12期501-508,共8页
Flight simulators can provide a suitable alternative to real flight, mainly to increase safety through the training of crew, and evaluation data from simulator can be used to validation and certification of aircraft s... Flight simulators can provide a suitable alternative to real flight, mainly to increase safety through the training of crew, and evaluation data from simulator can be used to validation and certification of aircraft systems. However, it must convey some degree of realism to the user to be effective. For that reason, it is necessary to calibrate the simulator software. Calibration for flight simulation is parameter identification process. The process is formulated as an optimization problem, and it is solved by using a new approach named Multiple Particle Collision Algorithm (MPCA). Results show a good performance for the employed approach. 展开更多
关键词 dynamic flight Parameter Identification Multiple Particle Collision Algorithm
下载PDF
Underconstrained Cable-Driven Parallel Suspension System of Virtual Flight Test Model in Wind Tunnel
9
作者 Huisong Wu Kaichun Zeng +2 位作者 Li Yu Yan Li Xiping Kou 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第4期395-416,共22页
An underconstrained cable-driven parallel robot(CDPR)suspension system was designed for a virtual flight testing(VFT)model.This mechanism includes two identical upper and lower kinematic chains,each of which comprises... An underconstrained cable-driven parallel robot(CDPR)suspension system was designed for a virtual flight testing(VFT)model.This mechanism includes two identical upper and lower kinematic chains,each of which comprises a cylindrical pair,rotating pair,and cable parallelogram.The model is pulled via two cables at the top and bottom and fixed by a yaw turntable,which can realize free coupling and decoupling with three rotational degrees of freedom of the model.First,the underconstrained CDPR suspension system of the VFT model was designed according to the mechanics theory,the degrees of freedom were verified,and the support platform was optimized to realize the coincidence between the model’s center of mass and the rotation center of the mechanism during the motion to ensure the stability of the support system.Finally,kinematic and dynamical modeling of the underconstrained CDPR suspension system was conducted;the system stiffness and stability criteria were deduced.Thus,the modeling of an underconstrained,reconfigurable,passively driven CDPR was understood comprehensively.Furthermore,dynamic simulations and experiments were used to verify that the proposed system meets the support requirements of the wind tunnel-based VFT model.This study serves as the foundation for subsequent wind tunnel test research on identifying the aerodynamic parameters of aircraft models,and also provides new avenues for the development of novel support methods for thewind tunnel testmodel. 展开更多
关键词 Virtual flight underconstrained cable-driven dynamic modeling stiffness and stability simulation analysis and experiment
下载PDF
Dynamic Surface Control with Nonlinear Disturbance Observer for Uncertain Flight Dynamic System 被引量:3
10
作者 李飞 胡剑波 +1 位作者 吴俊 王坚浩 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2015年第4期469-476,共8页
A new robust control method of a nonlinear flight dynamic system with aerodynamic coefficients and external disturbance has been proposed.The proposed control system is a combination of the dynamic surface control(DSC... A new robust control method of a nonlinear flight dynamic system with aerodynamic coefficients and external disturbance has been proposed.The proposed control system is a combination of the dynamic surface control(DSC)and the nonlinear disturbance observer(NDO).DSC technique provides the ability to overcome the″explosion of complexity″problem in backstepping control.NDO is adopted to observe the uncertainties in nonlinear flight dynamic system.It has been proved that the proposed design method can guarantee uniformly ultimately boundedness of all the signals in the closed-loop system by Lyapunov stability theorem.Finally,simulation results show that the proposed controller provides better performance than the traditional nonlinear controller. 展开更多
关键词 nonlinear disturbance observer(NDO) dynamic surface control(DSC) UNCERTAINTIES flight control
下载PDF
Development of an Autonomous Flight Control System for Small Size Unmanned Helicopter Based on Dynamical Model 被引量:2
11
作者 王赓 Kondak Konstantin +3 位作者 Marek Musial 盛焕烨 吕恬生 Hommel Günter 《Journal of Shanghai Jiaotong university(Science)》 EI 2007年第6期744-752,共9页
It is devoted to the development of an autonomous flight control system for small size unmanned helicopter based on dynamical model. At first, the mathematical model of a small size helicopter is described. After that... It is devoted to the development of an autonomous flight control system for small size unmanned helicopter based on dynamical model. At first, the mathematical model of a small size helicopter is described. After that simple but effective MTCV control algorithm was proposed. The whole flight control algorithm is composed of two parts: orientation controller based on the model for rotation dynamics and a robust position controller for a double integrator. The MTCV block is also used to achieve translation velocity control. To demonstrate the performance of the presented algorithm, simulation results and results achieved in real flight experiments were presented. 展开更多
关键词 unmanned HELICOPTER dynamicAL model flight control unmanned AERIAL vehicle (UAV)
下载PDF
Robust bounded control for uncertain flight dynamics using disturbance observer 被引量:1
12
作者 Mou Chen Bin Jiang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第4期640-647,共8页
The robust bounded flight control scheme is developed for the uncertain longitudinal flight dynamics of the fighter with control input saturation invoking the backstepping technique. To enhance the disturbance rejecti... The robust bounded flight control scheme is developed for the uncertain longitudinal flight dynamics of the fighter with control input saturation invoking the backstepping technique. To enhance the disturbance rejection ability of the robust flight control for fighters, the sliding mode disturbance observer is designed to estimate the compounded disturbance including the unknown external disturbance and the effect of the control input saturation. Based on the backstepping technique and the compounded disturbance estimated output, the robust bounded flight control scheme is proposed for the fighter with the unknown external disturbance and the control input saturation. The closed-loop system stability under the developed robust bounded flight control scheme is rigorously proved using the Lyapunov method and the uniformly asymptotical convergences of all closed-loop signals are guaranteed. Finally, simulation results are presented to show the effectiveness of the proposed robust bounded flight control scheme for the uncertain longitudinal flight dynamics of the fighter. 展开更多
关键词 flight dynamics bounded control robust control backstepping control disturbance observer.
下载PDF
Output Feedback Dynamic Surface Controller Design for Airbreathing Hypersonic Flight Vehicle 被引量:4
13
作者 Delong Hou Qing Wang Chaoyang Dong 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI 2015年第2期186-197,共12页
This paper addresses issues related to nonlinear robust output feedback controller design for a nonlinear model of airbreathing hypersonic vehicle. The control objective is to realize robust tracking of velocity and a... This paper addresses issues related to nonlinear robust output feedback controller design for a nonlinear model of airbreathing hypersonic vehicle. The control objective is to realize robust tracking of velocity and altitude in the presence of immeasurable states, uncertainties and varying flight conditions. A novel reduced order fuzzy observer is proposed to estimate the immeasurable states. Based on the information of observer and the measured states, a new robust output feedback controller combining dynamic surface theory and fuzzy logic system is proposed for airbreathing hypersonic vehicle. The closedloop system is proved to be semi-globally uniformly ultimately bounded (SUUB), and the tracking error can be made small enough by choosing proper gains of the controller, filter and observer. Simulation results from the full nonlinear vehicle model illustrate the effectiveness and good performance of the proposed control scheme. © 2014 Chinese Association of Automation. 展开更多
关键词 Altitude control Feedback control Fuzzy logic Hypersonic aerodynamics Hypersonic vehicles Nonlinear feedback Robust control Tracking (position) Uncertainty analysis Vehicles
下载PDF
NONLINEAR DYNAMIC INVERSION CONTROL WITH ADAPTIVE COMPENSATION FOR FLIGHT CONTROL SYSTEM
14
作者 Xu Jun, Zhang Minglian, Li Youliang (Department of Automatic Control, Beijing University of Aeronautics and Astronautics, Beijing, 100083, China) 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 1997年第3期68-73,共6页
A type of nonlinear dynamic inversion control with adaptive compensation is proposed in order to overcome its over sensitivity to parameter uncertainty and disturbance for flight control system using nonlinear dynam... A type of nonlinear dynamic inversion control with adaptive compensation is proposed in order to overcome its over sensitivity to parameter uncertainty and disturbance for flight control system using nonlinear dynamic inversion. This control strategy is different from the general strategy of a nonlinear adaptive control by taking into consideration both parameter uncertainty and external disturbance, the two major uncertain forms in flight control. Finally, an analysis of the stabilily of this control structure is given. 展开更多
关键词 adaptive control flight control systems nonlinear dynamic inversion
下载PDF
Model of Airflow Field on the Deck for Shipborne Helicopter Flight Dynamics Analysis
15
作者 Hu Guocai Xu Guang +1 位作者 Wang Yunliang Liu Shuyan 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2017年第5期567-577,共11页
For the research of helicopter/ship dynamic interface,the method of combining steady flow and stochastic flow is adopted to establish a flow field model applied to the flight dynamics analysis of shipborne helicopter.... For the research of helicopter/ship dynamic interface,the method of combining steady flow and stochastic flow is adopted to establish a flow field model applied to the flight dynamics analysis of shipborne helicopter.The steady flow is calculated by computational fluid dynamics(CFD)method,while the stochastic flow is composed of the compensation velocity derived from ship motion and turbulence above the deck.The accuracy of the proposed flow field model is verified by comparing the helicopter response in the proposed flow field with the results calculated by US Army′s Military Specifications(MIL)model which is commonly used in engineering.Meanwhile,it also shows the proposed flow field model is more appliable to flight dynamics analysis of shipborne helicopter.On that the basis,ship deck flow field is simulated at different sea conditions by adjusting the wind speed on the deck,mother ship movement and shipboard turbulence,etc.And helicopter angular rate response is calculated.The results show that the difference of dynamic stability between helicopter′s roll and pitch leads to the facts that the influence of above factors on the helicopter′s roll angular rate response is greater than that of pitch angular rate,that the frequency and amplitude of mother ship roll motion are much greater than those of pitch motion,and that the disturbance caused by roll motion on the air has greater influence on the helicopter response.The shipboard turbulence is the main disturbance factor that influences helicopter flight stability and its intensity determines the amplitudes of angular rate response. 展开更多
关键词 shipborne helicopter flight dynamics airflow field on the deck time-space characteristics sea condition
下载PDF
Tensors of Rank Two in Tensor Flight Dynamics
16
作者 Peter H. Zipfel 《Advances in Aerospace Science and Technology》 2018年第2期11-19,共9页
Tensor flight dynamics solves flight dynamics problems using Cartesian tensors, which are invariant under coordinate transformations, rather than Gibbs’ vectors, which change under time-varying transformations. Three... Tensor flight dynamics solves flight dynamics problems using Cartesian tensors, which are invariant under coordinate transformations, rather than Gibbs’ vectors, which change under time-varying transformations. Three tensors of rank two play a prominent role and are the subject of this paper: moment of inertia, rotation, and angular velocity tensor. A new theorem is proven governing the shift of reference frames, which is used to derive the angular velocity tensor from the rotation tensor. As applications, the general strap-down INS equations are derived, and the effect of the time-rate-of-change of the moment of inertia tensor on missile dynamics is investigated. 展开更多
关键词 TENSOR flight dynamicS COVARIANCE Principle EINSTEIN Rotation TENSOR Angular Velocity TENSOR Moment of INERTIA TENSOR Rotational Time Derivative Euler Transformation INS Missile dynamicS
下载PDF
ADAPTIVE FLIGHT CONTROL SYSTEM OF ARMED HELICOPTER USING WAVELET NEURAL NETWORK METHOD 被引量:1
17
作者 ZHURong-gang JIANGChangsheng FENGBin 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2004年第2期157-162,共6页
A discussion is devoted to the design of an adaptive flight control system of the armed helicopter using wavelet neural network method. Firstly, the control loop of the attitude angle is designed with a dynamic invers... A discussion is devoted to the design of an adaptive flight control system of the armed helicopter using wavelet neural network method. Firstly, the control loop of the attitude angle is designed with a dynamic inversion scheme in a quick loop and a slow loop. respectively. Then, in order to compensate the error caused by dynamic inversion, the adaptive flight control system of the armed helicopter using wavelet neural network method is put forward, so the BP wavelet neural network and the Lyapunov stable wavelet neural network are used to design the helicopter flight control system. Finally, the typical maneuver flight is simulated to demonstrate its validity and effectiveness. Result proves that the wavelet neural network has an engineering practical value and the effect of WNN is good. 展开更多
关键词 adaptive control helicopter flight control system dynamic inversion wavelet neural network maneuver flight
下载PDF
A Computational Study on Lateral Flight Stability of the Cranefly in Hover
18
作者 Na Xu Shuaizhi Zhou +1 位作者 Chunchen Zhang Xiaolei Mou 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第8期669-685,共17页
The dynamic flight stability of hovering insects includes the longitudinal and lateral motion.Research results have shown that for the majority of hovering insects the same longitudinal natural modes are identified an... The dynamic flight stability of hovering insects includes the longitudinal and lateral motion.Research results have shown that for the majority of hovering insects the same longitudinal natural modes are identified and the hovering flight in longitudinal is unstable.However,in lateral,the modal structure for hovering insects could be different and the stability property of lateral disturbance motion is not as robust as that of longitudinal motion.The cranefly possesses larger aspect ratio and lower Reynolds number,and such differences in morphology and kinematics may make the lateral dynamic stability different.In this paper,the lateral flight stability of the cranefly in hover is investigated by numerical simulation.Firstly,the stability derivatives are acquired by solving the incompressible Navier–Stokes equations.Subsequently,the dynamic stability characteristics are checked by analyzing the eigenvalues and eigenvectors of the linearized system.Computational results indicate that the lateral dynamic modal structure of cranefly is different from most other insects,consisting of three natural modes,and the weakly oscillatory mode illustrates the hovering lateral flight is nearly neutral.This neutral stability is mainly caused by the negative derivative of roll-moment vs.sideslip-velocity,which can be attributed to the weaker‘changingLEV-axial-velocity’effect.These results suggest that insects in nature may exhibit different dynamic stabilities with different morphological and kinematic parameters,which should be considered in the designs of flapping wing air vehicles. 展开更多
关键词 Flapping flight cranefly lateral flight stability natural modes of motion computational fluid dynamics
下载PDF
AIRCRAFT FLIGHT SAFETY ANALYSIS IN LOW ALTITUDE AIRSPACE 被引量:6
19
作者 王世锦 隋东 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2009年第2期147-153,共7页
The low altitude airspace will be open in China, general aviation flights are tremendously increased. Whether aircrafts can fly safely and how to determine the requirements of safety flight are the problems needed to ... The low altitude airspace will be open in China, general aviation flights are tremendously increased. Whether aircrafts can fly safely and how to determine the requirements of safety flight are the problems needed to be confirmed. Under this circumstances, based on the international Civil Aviation Organization(ICAO) criteria and the standards made by CAAC, this paper adopts the "See and Avoid" principle. Under the binding conditions of flight rules, visibility requirements, responding time, the aircraft speed, circle banking angle or the climbing angle, based on its study on aircraft dynamics principles, this paper establishes a mathematical collision avoidance model for head-to-head traffic and crossing converging traffic at the same level. And the safety separation requirements of the aircrafts in low altitude flight are equantitatively analyzed. Finally, the Matlab software is used to analyze the above method. The result shows that the safe traffic avoidance of the converging traffic at the same level meets certain flight conditions, while intersecting the traffic at the same level can safely avoid the collision. 展开更多
关键词 AIRCRAFT SAFETY flight dynamics low altitude airspace conflict avoiding
下载PDF
New robust fault-tolerant controller for self-repairing flight control systems 被引量:2
20
作者 Zhang Ren Wei Wang Zhen Shen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第1期77-82,共6页
A new robust fault-tolerant controller scheme integrating a main controller and a compensator for the self-repairing flight control system is discussed.The main controller is designed for high performance of the origi... A new robust fault-tolerant controller scheme integrating a main controller and a compensator for the self-repairing flight control system is discussed.The main controller is designed for high performance of the original faultless system.The compensating controller can be seen as a standalone loop added to the system to compensate the effects of fault guaranteeing the stability of the system.A design method is proposed using nonlinear dynamic inverse control as the main controller and nonlinear extended state observer-based compensator.The stability of the whole closed-loop system is analyzed.Feasibility and validity of the new controller is demonstrated with an aircraft simulation example. 展开更多
关键词 robust control self-repairing flight control nonlinear dynamic control extended state observer compensator.
下载PDF
上一页 1 2 66 下一页 到第
使用帮助 返回顶部