期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
AN ACCELERATION FOR THE EIGENSYSTEM REALIZATION ALGORITHM WITH PARTIAL SINGULAR VALUES DECOMPOSITION
1
作者 Zhou Zhou Zhou Yuxum 《Acta Mechanica Solida Sinica》 SCIE EI 2002年第2期127-132,共6页
The real-time identification of dynamic parameters is importantfor the control system of spacecraft. The eigensystme realizationalgorithm (ERA) is currently the typical method for such applica-tion. In order to identi... The real-time identification of dynamic parameters is importantfor the control system of spacecraft. The eigensystme realizationalgorithm (ERA) is currently the typical method for such applica-tion. In order to identify the dynamic parameter of spacecraftrapidly and accurately, an accelerated ERA with a partial singularvalues decomposition (PSVD) algorithm is presented. In the PSVD, theHankel matrix is reduced to dual diagonal form first, and thentransformed into a tridiagonal matrix. 展开更多
关键词 eigensystem realization algorithm partial singular value decomposition Sturm sequence dynamic parameter identification
下载PDF
Dynamic Modeling and Parameter Identification of Power Systems
2
《Tsinghua Science and Technology》 SCIE EI CAS 2000年第4期408-408,共1页
关键词 dynamic Modeling and Parameter identification of Power Systems
原文传递
Study on Control Technology of Tendon Bionic Driving Robot System
3
作者 Ke Xu Wenzhuo Li +1 位作者 Chenghao Ji Bing Liu 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第2期584-597,共14页
Although traditional position-controlled industrial robots can be competent for most assembly tasks,they cannot complete complex tasks that frequently interact with the external environment.The current research on exo... Although traditional position-controlled industrial robots can be competent for most assembly tasks,they cannot complete complex tasks that frequently interact with the external environment.The current research on exoskeleton robots also has problems such as excessive inertia of exoskeleton robots,poor system integration and difficult human–computer interaction control.To solve these problems,this paper independently develops a tendon driving robotic system composed of a tendon driving robotic arm and an upper limb exoskeleton,and studies its control technology.First,the robot system is selected,configured,and constructed.Second,the kinematics of the robot is analyzed,and then the dynamics are studied,and the parameter identification experiment of single degree of freedom is completed.Finally,the research on zero-force control and impedance control of the robot has effectively improved the robot’s human–machine integration ability,ensured the flexibility and compliance in the process of human–computer interaction.The compliant control problem expands the usage scenarios and application scope of robots and contributes to the realization of complex operations of this group of robots in unstructured environments. 展开更多
关键词 Tendon bionic drive robot Upper limb exoskeleton robot dynamic parameter identification Zero force control Impedance control
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部