期刊文献+
共找到6,561篇文章
< 1 2 250 >
每页显示 20 50 100
Electronic effects on radiation damage inα-iron:A molecular dynamics study
1
作者 江林 李敏 +2 位作者 付宝勤 崔节超 侯氢 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期521-529,共9页
Iron(Fe)-based alloys,which have been widely used as structural materials in nuclear reactors,can significantly change their microstructure properties and macroscopic properties under high flux neutron irradiation dur... Iron(Fe)-based alloys,which have been widely used as structural materials in nuclear reactors,can significantly change their microstructure properties and macroscopic properties under high flux neutron irradiation during operation,thus,the problems associated with the safe operation of nuclear reactors have been put forward naturally.In this work,a molecular dynamics simulation approach combined with electronic effects is developed for investigating the primary radiation damage process inα-Fe.Specifically,the influence of electronic effects on the collision cascade in Fe is systematically evaluated based on two commonly used interatomic potentials for Fe.The simulation results reveal that both electronic stopping(ES)and electron-phonon coupling(EPC)can contribute to the decrease of the number of defects in the thermal spike phase.The application of ES reduces the number of residual defects after the cascade evolution,whereas EPC has a reverse effect.The introduction of electronic effects promotes the formation of the dispersive subcascade:ES significantly changes the geometry of the damaged region in the thermal spike phase,whereas EPC mainly reduces the extent of the damaged region.Furthermore,the incorporation of electronic effects effectively mitigates discrepancies in simulation outcomes when using different interatomic potentials. 展开更多
关键词 radiation damage electronic effects molecular dynamics simulation α-iron
下载PDF
Solvent transport dynamics and its effect on evolution of mechanical properties of nitrocellulose(NC)-based propellants under hot-air drying process
2
作者 Enfa Fu Mingjun Yi +1 位作者 Qianling Liu Zhenggang Xiao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期262-270,共9页
Appropriate drying process with optimized controlling of drying parameters plays a vital role in the improvement of the quality and performance of propellant products.However,few research on solvent transport dynamics... Appropriate drying process with optimized controlling of drying parameters plays a vital role in the improvement of the quality and performance of propellant products.However,few research on solvent transport dynamics within NC-based propellants was reported,and its effect on the evolution of mechanical properties was not interpreted yet.This study is conducted to gain a comprehensive understanding of hot-air drying for NC-based propellants and clarify the effect of temperature on solvent transport behavior and further the change of mechanical properties during drying.The drying kinetic curves show the drying time required is decreased but the steady solvent content is increased and the drying rate is obviously increased with the increase of hot-air temperatures,indicating hot-air temperatures have a significant effect on drying kinetics.A modified drying model was established,and results show it is more appropriate to describe solvent transport behavior within NC-based propellants.Moreover,two linear equations were established to exhibit the relationship between solvent content and its effect on the change of tensile properties,and the decrease of residual solvent content causes an obvious increase of tensile strength and tensile modulus of propellant products,indicating its mechanical properties can be partly improved by adjustment of residual solvent content.The outcomes can be used to clarify solvent transport mechanisms and optimize drying process parameters of double-based gun propellants. 展开更多
关键词 Nitrocellulose-based propellants Solvent transport dynamics Mechanical properties Drying kinetics effective solvent diffusion coefficient
下载PDF
Time-domain dynamic constitutive model suitable for mucky soil site seismic response 被引量:1
3
作者 Dong Qing Chen Su +2 位作者 Jin Liguo Zhou Zhenghua Li Xiaojun 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第1期1-13,共13页
Soil nonlinear behavior displays noticeable effects on the site seismic response.This study proposes a new functional expression of the skeleton curve to replace the hyperbolic skeleton curve.By integrating shear modu... Soil nonlinear behavior displays noticeable effects on the site seismic response.This study proposes a new functional expression of the skeleton curve to replace the hyperbolic skeleton curve.By integrating shear modulus and combining the dynamic skeleton curve and the damping degradation coefficient,the constitutive equation of the logarithmic dynamic skeleton can be obtained,which considers the damping effect in a soil dynamics problem.Based on the finite difference method and the multi-transmitting boundary condition,a 1D site seismic response analysis program called Soilresp1D has been developed herein and used to analyze the time-domain seismic response in three types of sites.At the same time,this study also provides numerical simulation results based on the hyperbolic constitutive model and the equivalent linear method.The results verify the rationality of the new soil dynamic constitutive model.It can analyze the mucky soil site nonlinear seismic response,reflecting the deformation characteristics and damping effect of the silty soil.The hysteresis loop area is more extensive,and the residual strain is evident. 展开更多
关键词 seismic response time-domain dynamic constitutive model logarithmic dynamic skeleton dampening effect mucky soil
下载PDF
Micropillar compression using discrete dislocation dynamics and machine learning
4
作者 Jin Tao Dean Wei +3 位作者 Junshi Yu Qianhua Kan Guozheng Kang Xu Zhang 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2024年第1期39-47,共9页
Discrete dislocation dynamics(DDD)simulations reveal the evolution of dislocation structures and the interaction of dislocations.This study investigated the compression behavior of single-crystal copper micropillars u... Discrete dislocation dynamics(DDD)simulations reveal the evolution of dislocation structures and the interaction of dislocations.This study investigated the compression behavior of single-crystal copper micropillars using fewshot machine learning with data provided by DDD simulations.Two types of features are considered:external features comprising specimen size and loading orientation and internal features involving dislocation source length,Schmid factor,the orientation of the most easily activated dislocations and their distance from the free boundary.The yielding stress and stress-strain curves of single-crystal copper micropillar are predicted well by incorporating both external and internal features of the sample as separate or combined inputs.It is found that the machine learning accuracy predictions for single-crystal micropillar compression can be improved by incorporating easily activated dislocation features with external features.However,the effect of easily activated dislocation on yielding is less important compared to the effects of specimen size and Schmid factor which includes information of orientation but becomes more evident in small-sized micropillars.Overall,incorporating internal features,especially the information of most easily activated dislocations,improves predictive capabilities across diverse sample sizes and orientations. 展开更多
关键词 Discrete dislocation dynamics simulations Machine learning Size effects Orientation effects Microstructural features
下载PDF
Dynamic thermo-mechanical responses of road-soft ground system under vehicle load and daily temperature variation
5
作者 Chuxuan Tang Jie Liu +3 位作者 Zheng Lu Yang Zhao Jing Zhang Yinuo Feng 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1722-1731,共10页
A complete road-soft ground model is established in this paper to study the dynamic responses caused by vehicle loads and/or daily temperature variation.A dynamic thermo-elastic model is applied to capturing the behav... A complete road-soft ground model is established in this paper to study the dynamic responses caused by vehicle loads and/or daily temperature variation.A dynamic thermo-elastic model is applied to capturing the behavior of the rigid pavement,the base course,and the subgrade,while the soft ground is characterized using a dynamic thermo-poroelastic model.Solutions to the road-soft ground system are derived in the Laplace-Hankel transform domain.The time domain solutions are obtained using an integration approach.The temperature,thermal stress,pore water pressure,and displacement responses caused by the vehicle load and the daily temperature variation are presented.Results show that obvious temperature change mainly exists within 0.3 m of the road when subjected to the daily temperature variation,whereas the stress responses can still be found in deeper places because of the thermal swelling/shrinkage deformation within the upper road structures.Moreover,it is important to consider the coupling effects of the vehicle load and the daily temperature variation when calculating the dynamic responses inside the road-soft ground system. 展开更多
关键词 dynamic response Vehicle load Daily temperature variation Thermo-poroelastic medium Coupling effects
下载PDF
Experimental and theoretical study on the dynamic effective stress of loaded gassy coal during gas release 被引量:2
6
作者 Bing Zhang Hanpeng Wang +2 位作者 Peng Wang Guofeng Yu Shitan Gu 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第3期339-349,共11页
In the process of mining coalbed methane(CBM),an unsteady state often arises due to the rapid extraction,release and pressure relief of CBM.In this case,the effective stress of coal changes dynamically,affecting the s... In the process of mining coalbed methane(CBM),an unsteady state often arises due to the rapid extraction,release and pressure relief of CBM.In this case,the effective stress of coal changes dynamically,affecting the stability of the gassy coal seam.In this paper,gas release tests of gassy coal under conventional triaxial compression were performed,and the dynamic effective stress(DES)during gas release was obtained indirectly based on a constitutive equation and deformation of coal.The results show that the maximum increases in DES caused by the release of free gas and adsorbed gas under the stress of 1.1 MPa were 0.811 and 5.418 MPa,respectively,which seriously affected the stress state of the coal.During the gas release,the free gas pressure and the adsorbed gas volume were the parameters that directly affected the DES and showed a positive linear relationship with the DES with an intercept of zero.The DES of the coal sample increased exponentially with time,which was determined by the contents of free and adsorbed gas.Based on the experimental results and theoretical analysis,an effective stress model was obtained for loaded gassy coal during gas release.The results of verification indicated accuracy greater than 99%. 展开更多
关键词 Gassy coal dynamic effective stress Gas release Gas-solid coupling Mathematical model
下载PDF
Nonlinear coupling modeling and dynamics analysis of rotating flexible beams with stretching deformation effect 被引量:2
7
作者 Xiaokang DU Yuanzhao CHEN +3 位作者 Jing ZHANG Xian GUO Liang LI Dingguo ZHANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第1期125-140,共16页
Dynamic coupling modeling and analysis of rotating beams based on the nonlinear Green-Lagrangian strain are introduced in this work.With the reservation of the axial nonlinear strain,there are more coupling terms for ... Dynamic coupling modeling and analysis of rotating beams based on the nonlinear Green-Lagrangian strain are introduced in this work.With the reservation of the axial nonlinear strain,there are more coupling terms for axial and transverse deformations.The discretized dynamic governing equations are obtained by using the finite element method and Lagrange’s equations of the second kind.Time responses are conducted to compare the proposed model with other previous models.The stretching deformation due to rotating motion is observed and calculated by special formulations under dynamic equilibrium.The stretching deformation and the change of the associated equilibrium position are taken into account to analyze the free vibration and frequency response of the rotating beams.Analytical and numerical comparisons show that the proposed model can provide reliable results,while the previous models may lead to imprecise results,especially in high-speed conditions. 展开更多
关键词 rotating beam finite element method stiffening effect stretching deformation dynamic equilibrium
下载PDF
Sliding behaviors of the trapezoidal roof rock block under a lateral dynamic disturbance
8
作者 Feng Dai Wancheng Zhu +2 位作者 Min Ren Shunchuan Wu Leilei Niu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期741-760,共20页
The surrounding rock of underground space is always affected by external dynamic disturbance from the side position,such as blasting vibration from a stope at the same level or seismic waves from adjacent strata.A ser... The surrounding rock of underground space is always affected by external dynamic disturbance from the side position,such as blasting vibration from a stope at the same level or seismic waves from adjacent strata.A series of laboratory tests,numerical simulations and theoretical analyses were carried out in this study to disclose the sliding mechanism of roof rock blocks under lateral disturbance.Firstly,the experiments on trapezoidal key block under various clamping loads and disturbance were conducted,followed by numerical simulations using the fast Lagrangian analysis of continua(FLAC3D).Then,based on the conventional wave propagation model and the classical shear-slip constitutive model,a theoretical model was proposed to capture the relative displacement between blocks and the sliding displacement of the key block.The results indicate that the sliding displacement of the key block increased linearly with the disturbance energy and decreased exponentially with the clamping load when the key block was disturbed to slide(without instability).Meanwhile,when the key block was disturbed to fall,two types of instability process may appear as immediate type or delayed type.In addition,the propagation of stress waves in the block system exhibited obvious low-velocity and lowfrequency characteristics,resulting in the friction reduction effect appearing at the contact interface,which is the essential reason for the sliding of rock blocks.The results can be applied to practical underground engineering and provide valuable guidance for the early detection and prevention of rockfalling disasters. 展开更多
关键词 Lateral dynamic disturbance Trapezoidal rock block system Low-velocity and low-frequency wave Friction reduction effect Instability mode
下载PDF
Numerical Study on the Aerodynamic and Fluid−Structure Interaction of An NREL-5MW Wind Turbine
9
作者 ZHAO Mi YU Wan-li +2 位作者 WANG Pi-guang QU Yang DU Xiu-li 《China Ocean Engineering》 SCIE EI CSCD 2024年第3期363-378,共16页
A 5-MW wind turbine has been modeled and analyzed for fluid-structure interaction and aerodynamic performance.In this study, a full-scale model of a 5-MW wind turbine is first developed based on a computational fluid ... A 5-MW wind turbine has been modeled and analyzed for fluid-structure interaction and aerodynamic performance.In this study, a full-scale model of a 5-MW wind turbine is first developed based on a computational fluid dynamics(CFD) approach, in which the unsteady, noncompressible Reynolds Averaged Navier-Stokes(RANS) method is used. The main focus of the study is to analyze the tower shadow effect on the aerodynamic performance of the wind turbine under different inlet flow conditions. Subsequently, the finite element model is established by considering fluid/structure interactions to study the structural stress, displacement, strain distributions and flow field information of the structure under the uniform wind speed. Finally, the fluid-structure interaction model is established by considering turbulent wind and the tower shadow effect. The variation rules of the dynamic response of the one-way and two-way fluid-structure interaction(FSI) models under different wind speeds are analyzed, and the numerical calculation results are compared with those of the centralized mass model. The results show that the tower shadow effect and structural deformation are the main factors affecting the aerodynamic load fluctuation of the wind turbine, which in turn affects the aerodynamic performance and structural stability of the blades. The structural dynamic response of the coupled model shows significant similarity, while the structural displacement response of the former exhibits less fluctuation compared with the conventional centralized mass model. The one-way fluid-structure interaction(FSI)model shows a higher frequency of stress-strain and displacement oscillations on the blade compared with the two-way FSI model. 展开更多
关键词 computational fluid dynamics methods(CFD) tower shadow effect aerodynamic performance fluidstructure interaction space flow field
下载PDF
Dynamic Modelling of a Hybrid Variable Reluctance Machine Using the 3D Finite Element Method
10
作者 Dingamadji Hilaire Belemdara Jérôme Mbaïnaïbeye 《Journal of Electromagnetic Analysis and Applications》 2024年第7期103-113,共11页
This paper presents the work carried out to evaluate the dynamic performance of the Hybrid Variable Reluctance Motor (HVRM). The fourth-order Runge-Kutta integration algorithm was employed to solve the equations of th... This paper presents the work carried out to evaluate the dynamic performance of the Hybrid Variable Reluctance Motor (HVRM). The fourth-order Runge-Kutta integration algorithm was employed to solve the equations of the dynamic model, in conjunction with the three-dimensional finite element method. The 3D numerical data was calculated using Comsol Multiphysics, which accounts for the nonlinearity of the ferromagnetic material and the 3D nature of the HVRM. The outcomes of this study are precise and accurately predict the dynamic behaviour of the HVRM in terms of rotor position response, rotational speed and torque. The distinctive contribution of this work lies in the 3D numerical modelling of the HVRM and the subsequent evaluation and analysis of its dynamic operation. Analytical and numerical 2D studies are less resource-intensive and time-consuming, and are more straightforward and rapid to analyse and interpret. However, they are constrained in their capacity to examine spatial, volumetric interactions and intricate dynamics such as flux studies where three 3D effects cannot be disregarded, winding end effects and the configuration and positioning of the interposed permanent magnet. 展开更多
关键词 Numerical Computing Complex dynamic Flux Linkage 3D effects Equilibrium Position
下载PDF
Strain effects on Li^(+) diffusion in solid electrolyte interphases:A molecular dynamics study
11
作者 姬祥 张俊乾 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第6期459-465,共7页
Dilithium ethylene dicarbonate(Li_(2)EDC) and dilithium butylene dicarbonate(Li_(2)BDC) are the common organic compositions of the solid electrolyte interphase(SEI) layers in rechargeable lithium-ion batteries.The Li^... Dilithium ethylene dicarbonate(Li_(2)EDC) and dilithium butylene dicarbonate(Li_(2)BDC) are the common organic compositions of the solid electrolyte interphase(SEI) layers in rechargeable lithium-ion batteries.The Li^(+) diffusion in the amorphous and ordered phases of Li_(2) EDC and Li_(2) BDC under various strains has been investigated by using molecular dynamics simulations.It is found that different strains lead to diverse changes in Li^(+) diffusivity.The tensile strain makes the Li+diffusion coefficients increase in amorphous and ordered Li_(2)EDC or Li_(2) BDC,and the compressive strain makes the Li+diffusion coefficients decrease in them.The average Li+coordination number calculation,ion conductivity calculation and the calculation of the residence autocorrelation function in amorphous and ordered Li_(2)EDC or Li_(2)BDC are performed to further analyze the strain effects on Li^(+) transport in them.The factors influencing Li^(+) diffusion in amorphous and ordered Li_(2)EDC or Li_(2) BDC under the strain are discussed. 展开更多
关键词 molecular dynamics alkyl dicarbonate strain effect DIFFUSION
下载PDF
Theoretical study on dynamic effective electroelastic properties of random piezoelectric composites with aligned inhomogeneities
12
作者 Yanpeng YUE Yongping WAN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第4期525-546,共22页
The closed-form solutions of the dynamic problem of heterogeneous piezoelectric materials are formulated by introducing polarizations into a reference medium and using the generalized reciprocity theorem.These solutio... The closed-form solutions of the dynamic problem of heterogeneous piezoelectric materials are formulated by introducing polarizations into a reference medium and using the generalized reciprocity theorem.These solutions can be reduced to the ones of an elastodynamic problem.Based on the effective medium method,these closedform solutions can be used to establish the self-consistent equations about the frequencydependent effective parameters,which can be numerically solved by iteration.Theoretical predictions are compared with the experimental results,and good agreement can be found.Furthermore,the analyses on the effects of microstructure and wavelength on the effective properties,resonance frequencies,and attenuation are also presented,which may provide some guidance for the microstructure design and analysis of piezoelectric composites. 展开更多
关键词 piezoelectric composite dynamic effective property self-consistent method resonance frequency WAVELENGTH
下载PDF
Quantum Dynamics Calculations on Isotope Effects of Hydrogen Transfer Isomerization in Formic Acid Dimer
13
作者 Fengyi Li Xiaoxi Liu +2 位作者 Xingyu Yang Jianwei Cao Wensheng Bian 《Chinese Journal of Chemical Physics》 SCIE EI CAS CSCD 2023年第5期545-552,I0001,共9页
We present a quantum dynamics study on the isotope effects of hydro-gen transfer isomerization in the formic acid dimer,and this is achieved by multidimensional dy-namics calculations with an efficient quantum mechani... We present a quantum dynamics study on the isotope effects of hydro-gen transfer isomerization in the formic acid dimer,and this is achieved by multidimensional dy-namics calculations with an efficient quantum mechanical theoretical scheme developed by our group,on a full-dimensional neural network ab initio potential energy surface.The ground-state and fundamental tun-neling splittings for four deuterium isotopologues of formic acid dimer are considered,and the calculated results are in very good general agreement with the avail-able experimental measurements.Strong isotope effects are revealed,the mode-specific funda-mental excitation effects on the tunneling rate are evidently influenced by the deuterium sub-stitution of H atom with the substitution on the OH bond being more effective than on the CH bond.Our studies are helpful for acquiring a better understanding of isotope effects in the double-hydrogen transfer processes. 展开更多
关键词 Quantum dynamics ISOMERIZATION Isotope effect Tunneling splitting Double hydrogen transfer
下载PDF
Study on dynamic response of high speed train window glass under tunnel aerodynamic effects
14
作者 Xiaogen Liu Shuang Qi +1 位作者 Detian Wan Dezhi Zheng 《Railway Sciences》 2023年第2期211-224,共14页
Purpose-This paper aims to analyze the bearing characteristics of the high speed train window glass under aerodynamic load effects.Design/methodology/approach-In order to obtain the dynamic strain response of passenge... Purpose-This paper aims to analyze the bearing characteristics of the high speed train window glass under aerodynamic load effects.Design/methodology/approach-In order to obtain the dynamic strain response of passenger compartment window glass during high-speed train crossing the tunnel,taking the passenger compartment window glass of the CRH3 high speed train onWuhan-Guangzhou High Speed Railway as the research object,this study tests the strain dynamic response and maximum principal stress of the high speed train passing through the tunnel entrance and exit,the tunnel and tunnel groups as well as trains meeting in the tunnel at an average speed of 300 km$h-1.Findings-The results show that while crossing the tunnel,the passenger compartment window glass of high speed train is subjected to the alternating action of positive and negative air pressures,which shows the typical mechanic characteristics of the alternating fatigue stress of positive-negative transient strain.The maximum principal stress of passenger compartment window glass for high speed train caused by tunnel aerodynamic effects does not exceed 5 MPa,and the maximum value occurs at the corresponding time of crossing the tunnel groups.The high speed train window glass bears medium and low strain rates under the action of tunnel aerodynamic effects,while the maximum strain rate occurs at the meeting moment when the window glass meets the train head approaching from the opposite side in the tunnel.The shear modulus of laminated glass PVB film that makes up high speed train window glass is sensitive to the temperature and action time.The dynamically equivalent thickness and stiffness of the laminated glass and the dynamic bearing capacity of the window glass decrease with the increase of the action time under tunnel aerodynamic pressure.Thus,the influence of the loading action time and fatigue under tunnel aerodynamic effects on the glass strength should be considered in the design for the bearing performance of high speed train window glass.Originality/value-The research results provide data support for the analysis of mechanical characteristics,damage mechanism,strength design and structural optimization of high speed train glass. 展开更多
关键词 High speed train window glass Tunnel aerodynamic effect Strain dynamic response Maximum principal stress Strain rate Bearing characteristics
下载PDF
Flatness Control Based on Dynamic Effective Matrix for Cold Strip Mills 被引量:24
15
作者 LIU Hongmin HE Haitao +1 位作者 SHAN Xiuying JIANG Guangbiao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第2期287-296,共10页
Steel strips are the main of steel products and flatness is an important quality indicator of steel strips. Flatness control is the key and highly difficult technique of strip mills. The bottle-neck restricting the im... Steel strips are the main of steel products and flatness is an important quality indicator of steel strips. Flatness control is the key and highly difficult technique of strip mills. The bottle-neck restricting the improvement of flatness control techniques is that the research on flatness theories and control mathematic models is not in accordance with the requirement of technique developments. To build a simple, rapid and accurate explicit formulation control model has become an urgent need for the development of flatness control technique. This paper puts forward the conception of dynamic effective matrix based on the effective matrix method for flatness control proposed by the authors under the consideration of the influence of the change of parameters in roiling processes on the effective matrix, and the concept is validated by industrial productions. Three methods of the effective matrix generation are induced: the calculation method based on the flatness prediction model; the calculation method based on the data excavation in rolling processes and the direct calculation method based on the network model. A fuzzy neural network effective matrix model is built based on the clusters, and then the network structure is optimized and the high-speed-calculation problem of the dynamic effective matrix is solved. The flatness control scheme for cold strip mills is proposed based on the dynamic effective matrix. On stand 5 of the 1 220 mm five-stand 4-high cold strip tandem mill, the industrial experiment with the control methods of tilting roll and bending roll is done by the control scheme of the static effective matrix and the dynamic effective matrix, respectively. The experiment result proves that the control effect of the dynamic effective matrix is much better than that of the static effective matrix. This paper proposes a new idea and method for the dynamic flatness control in the rolling processes of cold strip mills and develops the theory and model of the flatness control effective matrix method. 展开更多
关键词 cold strip mill flatness control dynamic effective matrix CLUSTER fuzzy neural network
下载PDF
Effects of topography on dynamic responses of single piles under vertical cyclic loading 被引量:6
16
作者 QU Li-ming DING Xuan-ming +2 位作者 WU Chong-rong LONG Yong-hong YANG Jin-chuan 《Journal of Mountain Science》 SCIE CSCD 2020年第1期230-243,共14页
This paper describes model tests of single piles subjected to vertical cyclic compressive loading for three kinds of topography: sloping ground, level ground, and inclined bedrock. Comprehensive dynamic responses invo... This paper describes model tests of single piles subjected to vertical cyclic compressive loading for three kinds of topography: sloping ground, level ground, and inclined bedrock. Comprehensive dynamic responses involving cyclic effects and vibration behaviours are studied under various load combinations of dynamic amplitude, mean load,frequency and number of cycles. Test results show that permanent settlement can generally be predicted with a quadratic function or power function of cycles.Sloping ground topography produces more pronounced settlement than level ground under the same load condition. For vibration behaviour,displacement amplitude is weakly affected by the number of cycles, while load amplitude significantly influences dynamic responses. Test results also reveal that increasing load amplitude intensifies nonlinearity and topography effects. The strain distribution in a pile and soil stress at the pile tip are displayed to investigate the vibration mechanism accounting for sloping ground effects. Furthermore, the dynamic characteristics among three kinds of topography in the elastic stage are studied using a three-dimensional finite method. Numerical results are validated by comparing with experimental results for base inclination topography. An inclined soil profile boundary causes non-axisymmetric resultant deformation, though a small difference in vertical displacement is observed. 展开更多
关键词 PILE Model test dynamic response Permanent settlement Vibration displacement Topography effects
下载PDF
Brazilian disc test study on tensile strength-weakening effect of high pre-loaded red sandstone under dynamic disturbance 被引量:16
17
作者 GONG Feng-qiang WU Wu-xing ZHANG Le 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第10期2899-2913,共15页
Tensile failure(spalling or slabbing)often occurs on the sidewall of deep tunnel,which is closely related to the coupled stress state of deep rock mass under high pre-static load and dynamic disturbance.To reveal the ... Tensile failure(spalling or slabbing)often occurs on the sidewall of deep tunnel,which is closely related to the coupled stress state of deep rock mass under high pre-static load and dynamic disturbance.To reveal the mechanism of rock tensile failure caused by this coupled stress mode,the Brazilian disc tests were carried on red sandstone under high pre-static load induced by dynamic disturbance.Based on the pure static tensile fracture load of red sandstone specimen,two static load levels(80%and 90%of the pure static tensile fracture load)were selected as the initial high pre-static loading state,and then the dynamic disturbance load was applied until the rock specimen was destroyed.The dynamic disturbance loading mode adopted a sinusoidal wave(sine-wave)load,and the loading wave amplitude was 20%and 10%of the pure static tensile fracture load,respectively.The dynamic disturbance frequencies were set to 1,10,20,30,40,and 50 Hz.The results show that the tensile failure strength and peak displacement of red sandstone specimens under coupled load actions are lower than those under pure static tensile load,and both parameters decrease significantly with the increase of dynamic disturbance frequency.With the increase of dynamic disturbance frequency,the decrease range of tensile strength of red sandstone increased from 3.3%to 9.4%when the pre-static load level is 80%.While when the pre-static load level is 90%,the decrease range will increase from 7.4%to 11.6%.This weakening effect of tensile strength shows that the deep surrounding rock is more likely to fail under the coupled load actions of pre-static load and dynamic disturbance.In this tensile failure mechanism of the deep surrounding rock,the stress environment of deep sidewall rock determines that the failure mode of rock is a tensile failure,the pre-static load level dominates the tensile failure strength of surrounding rock,and dynamic disturbance promotes the strength-weakening effect and affects the weakening range. 展开更多
关键词 SPALLING deep surrounding rock strength-weakening effect pre-static load dynamic disturbance tensile failure Brazilian disc test
下载PDF
Frequency-dependent dynamic effective properties of porous materials 被引量:4
18
作者 PeijunWei ZhupingHuang 《Journal of University of Science and Technology Beijing》 CSCD 2005年第3期236-242,共7页
The frequency-dependent dynamic effective properties (phase velocity, attenuation and elastic modulus) of porous materials are studied numerically. The coherent plane longitudinal and shear wave equations, which are o... The frequency-dependent dynamic effective properties (phase velocity, attenuation and elastic modulus) of porous materials are studied numerically. The coherent plane longitudinal and shear wave equations, which are obtained by averaging on the multiple scattering fields, are used to evaluate the frequency-dependent dynamic effective properties of a porous material. It is found that the prediction of the dynamic effective properties includes the size effects of voids which are not included in most prediction of the traditional static effective properties. The prediction of the dynamic effective elastic modulus at a relatively low frequency range is compared with that of the traditional static effective elastic modulus, and the dynamic effective elastic modulus is found to be very close to the Hashin-Shtrikman upper bound. 展开更多
关键词 dynamic effective properties porous material size effects multiple scattering
下载PDF
Sample size effect on the dynamic torsional behaviour of the 2A12 aluminium alloy 被引量:4
19
作者 J.H.Chen W.F.Xu +4 位作者 R.Z.Xie F.J.Zhang W.J.Hu X.C.Huang G.Chen 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2017年第6期317-324,共8页
In order to investigate the effect of sample size on the dynamic torsional behaviour of the 2A12 aluminium alloy. In this paper, torsional split Hopkinson bar tests are conducted on this alloy with different sample di... In order to investigate the effect of sample size on the dynamic torsional behaviour of the 2A12 aluminium alloy. In this paper, torsional split Hopkinson bar tests are conducted on this alloy with different sample dimensions. It is found that with the decreasing gauge length and thickness, the tested yield strength increases. However, the sample innerlouter diameter has little effect on the dynamic torsional behaviour. Based on the finite element method, the stress states in the alloy with different sample sizes are analysed. Due to the effect of stress concentration zone (SCZ), the shorter sample has a higher yield stress. Furthermore, the stress distributes more uniformly in the thinner sample, which leads to the higher tested yield stress. According to the experimental and simulation analysis, some suggestions on choosing the sample size are given as well. 展开更多
关键词 Torsional split Hopkinson bar dynamic torsion Sample size effect Finite element analysis Stress distribution
下载PDF
Experimental investigation of rigid confinement effects of radial strain on dynamic mechanical properties and failure modes of concrete 被引量:4
20
作者 Pengfei Liu Xiaoping Zhou Qihu Qian 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2021年第5期939-951,共13页
In this study,to confirm the effect of confining pressure on dynamic mechanical behavior and failure modes of concrete,a split Hopkinson pressure bar dynamic loading device was utilized to perform dynamic compressive ... In this study,to confirm the effect of confining pressure on dynamic mechanical behavior and failure modes of concrete,a split Hopkinson pressure bar dynamic loading device was utilized to perform dynamic compressive experiments under confined and unconfined conditions.The confining pressure was achieved by applying a lateral metal sleeve on the testing specimen which was loaded in the axial direction.The experimental results prove that dynamic peak axial stress,dynamic peak lateral stress,and peak axial strain of concrete are strongly sensitive to the strain rate under confined conditions.Moreover,the failure patterns are significantly affected by the stress-loading rate and confining pressure.Concrete shows stronger strain rate effects under an unconfined condition than that under a confined condition.More cracks are created in concrete subjected to uniaxial dynamic compression at a higher strain rate,which can be explained by a thermal-activated mechanism.By contrast,crack generation is prevented by confinement.Fitting formulas of the dynamic peak stress and dynamic peak axial strain are established by considering strain rate effects(50–250 s-1)as well as the dynamic confining increase factor(DIFc). 展开更多
关键词 Strain rate effect Multiaxial loading dynamic peak axial stress Thermo-activated mechanism dynamic increase factor
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部