Many years ago Bohr characterized the fundamental differences between the two extreme cases of quantum mechanical many-body problems known at that time: between the compound states in nuclei at extremely high level de...Many years ago Bohr characterized the fundamental differences between the two extreme cases of quantum mechanical many-body problems known at that time: between the compound states in nuclei at extremely high level density and the shell-model states in atoms at low level density. It is shown in the present paper that the compound nucleus states at high level density are the result of a dynamical phase transition due to which they have lost any spectroscopic relation to the individual states of the nucleus. The last ones are shell-model states which are of the same type as the shell-model states in atoms. Mathematically, dynamical phase transitions are caused by singular (exceptional) points at which the trajectories of the eigenvalues of the non-Hermitian Hamilton operator cross. In the neighborhood of these singular points, the phases of the eigenfunctions are not rigid. It is possible therefore that some eigenfunctions of the system align to the scattering wavefunctions of the environment by decoupling (trapping) the remaining ones from the environment. In the Schr?dinger equation, nonlinear terms appear in the neighborhood of the singular points.展开更多
The behaviors of coupled oscillators, each of which has periodic motion with random natural frequency in the absence of coupling, are investigated when phase shifts are considered. In the system of coupled oscillators...The behaviors of coupled oscillators, each of which has periodic motion with random natural frequency in the absence of coupling, are investigated when phase shifts are considered. In the system of coupled oscillators, phase shifts are the same between different oscillators. Synchronization and synchronization transition are revealed with different phase shifts. Phase shifts play an important role for this kind of system. When the phase shift α〈 0.5π, the synchronization state can be attained by increasing the coupling, and the system cannot reach the synchronization state while α≥ 0.5π. A clear scaling between complete synchronization critical coupling strength Kpc and α - 0.5π is found.展开更多
Through a detailed study of the mean-field approximation, the Gaussian approximation, the perturbation expansion, and the field-theoretic renormalization-group analysis of a φ^3 theory, we show that the instability f...Through a detailed study of the mean-field approximation, the Gaussian approximation, the perturbation expansion, and the field-theoretic renormalization-group analysis of a φ^3 theory, we show that the instability fixed points of the theory, together with their associated instability exponents, are quite probably relevant to the scaling and universality behavior exhibited by the first-order phase transitions in a field-driven scalar Ca model, below its critical temperature and near the instability points. Finite- time scaling and leading corrections to the scaling are considered. We also show that the instability exponents of the first-order phase transitions are equivalent to those of the Yang-Lee edge singularity, and employ the latter to improve our estimates of the former. The outcomes agree well with existing numerical results.展开更多
We study the scaling and universal behavior of temperature-driven first-order phase transitions in scalar models. These transitions are found to exhibit rich phenomena, though they are controlled by a single complex-c...We study the scaling and universal behavior of temperature-driven first-order phase transitions in scalar models. These transitions are found to exhibit rich phenomena, though they are controlled by a single complex-conjugate pair of imaginary fixed points of φ3 theory. Scaling theories and renormalization group theories are developed to account for the phenomena, and three universality classes with their own hysteresis exponents are found: a field-like thermal class, a partly thermal class, and a purely thermal class, designated, respectively, as Thermal Classes I, II, and III. The first two classes arise from the opposite limits of the scaling forms proposed and may cross over to each other depending on the temperature sweep rate. They are both described by a massless model and a purely massive model, both of which are equivalent and are derived from φ3 theory via symmetry. Thermal Class III characterizes the cooling transitions in the absence of applied external fields and is described by purely thermal models, which include cases in which the order parameters possess different symmetries and thus exhibit different universality classes. For the purely thermal models whose free energies contain odd-symmetry terms, Thermal Class III emerges only at the mean-field level and is identical to Thermal Class II. Fluctuations change the model into the other two models. Using the extant three- and two- loop results for the static and dynamic exponents for the Yang-Lee edge singularity, respectively, which falls into the same universality class as φ3 theory, we estimate the thermal hysteresis exponents of the various classes to the same precision. Comparisons with numerical results and experiments are briefly discussed.展开更多
We use molecular dynamics simulations to compute the Lyapunov spectra of many-particle systems resembling simple fluids in thermal equilibrium and in non-equilibrium stationary states. Here we review some of the most ...We use molecular dynamics simulations to compute the Lyapunov spectra of many-particle systems resembling simple fluids in thermal equilibrium and in non-equilibrium stationary states. Here we review some of the most interesting results and point to open questions.展开更多
文摘Many years ago Bohr characterized the fundamental differences between the two extreme cases of quantum mechanical many-body problems known at that time: between the compound states in nuclei at extremely high level density and the shell-model states in atoms at low level density. It is shown in the present paper that the compound nucleus states at high level density are the result of a dynamical phase transition due to which they have lost any spectroscopic relation to the individual states of the nucleus. The last ones are shell-model states which are of the same type as the shell-model states in atoms. Mathematically, dynamical phase transitions are caused by singular (exceptional) points at which the trajectories of the eigenvalues of the non-Hermitian Hamilton operator cross. In the neighborhood of these singular points, the phases of the eigenfunctions are not rigid. It is possible therefore that some eigenfunctions of the system align to the scattering wavefunctions of the environment by decoupling (trapping) the remaining ones from the environment. In the Schr?dinger equation, nonlinear terms appear in the neighborhood of the singular points.
基金Project supported in part by the National Natural Science Foundation of China (Grant No 10875011)the 973 Programme (Grant No 2007CB814805)the Foundation of Doctoral Training of China (Grant No 20060027009)
文摘The behaviors of coupled oscillators, each of which has periodic motion with random natural frequency in the absence of coupling, are investigated when phase shifts are considered. In the system of coupled oscillators, phase shifts are the same between different oscillators. Synchronization and synchronization transition are revealed with different phase shifts. Phase shifts play an important role for this kind of system. When the phase shift α〈 0.5π, the synchronization state can be attained by increasing the coupling, and the system cannot reach the synchronization state while α≥ 0.5π. A clear scaling between complete synchronization critical coupling strength Kpc and α - 0.5π is found.
基金Acknowledgements This work was supported by the National Natural Science Foundation of China (Grant No. 10625420).
文摘Through a detailed study of the mean-field approximation, the Gaussian approximation, the perturbation expansion, and the field-theoretic renormalization-group analysis of a φ^3 theory, we show that the instability fixed points of the theory, together with their associated instability exponents, are quite probably relevant to the scaling and universality behavior exhibited by the first-order phase transitions in a field-driven scalar Ca model, below its critical temperature and near the instability points. Finite- time scaling and leading corrections to the scaling are considered. We also show that the instability exponents of the first-order phase transitions are equivalent to those of the Yang-Lee edge singularity, and employ the latter to improve our estimates of the former. The outcomes agree well with existing numerical results.
基金We thank Shuai Yin and Baoquan Feng for their helpful discussions. This work was supported by the National Natural Science foundation of PRC (Grants Nos. 10625420 and 11575297) and FRFCUC.
文摘We study the scaling and universal behavior of temperature-driven first-order phase transitions in scalar models. These transitions are found to exhibit rich phenomena, though they are controlled by a single complex-conjugate pair of imaginary fixed points of φ3 theory. Scaling theories and renormalization group theories are developed to account for the phenomena, and three universality classes with their own hysteresis exponents are found: a field-like thermal class, a partly thermal class, and a purely thermal class, designated, respectively, as Thermal Classes I, II, and III. The first two classes arise from the opposite limits of the scaling forms proposed and may cross over to each other depending on the temperature sweep rate. They are both described by a massless model and a purely massive model, both of which are equivalent and are derived from φ3 theory via symmetry. Thermal Class III characterizes the cooling transitions in the absence of applied external fields and is described by purely thermal models, which include cases in which the order parameters possess different symmetries and thus exhibit different universality classes. For the purely thermal models whose free energies contain odd-symmetry terms, Thermal Class III emerges only at the mean-field level and is identical to Thermal Class II. Fluctuations change the model into the other two models. Using the extant three- and two- loop results for the static and dynamic exponents for the Yang-Lee edge singularity, respectively, which falls into the same universality class as φ3 theory, we estimate the thermal hysteresis exponents of the various classes to the same precision. Comparisons with numerical results and experiments are briefly discussed.
文摘We use molecular dynamics simulations to compute the Lyapunov spectra of many-particle systems resembling simple fluids in thermal equilibrium and in non-equilibrium stationary states. Here we review some of the most interesting results and point to open questions.